The effect of estimating prevalences on the population-wise error rate.

IF 1.6 3区 医学 Q3 HEALTH CARE SCIENCES & SERVICES Statistical Methods in Medical Research Pub Date : 2025-01-19 DOI:10.1177/09622802241307237
Remi Luschei, Werner Brannath
{"title":"The effect of estimating prevalences on the population-wise error rate.","authors":"Remi Luschei, Werner Brannath","doi":"10.1177/09622802241307237","DOIUrl":null,"url":null,"abstract":"<p><p>The population-wise error rate is a type I error rate for clinical trials with multiple target populations. In such trials, a treatment is tested for its efficacy in each population. The population-wise error rate is defined as the probability that a randomly selected, future patient will be exposed to an inefficient treatment based on the study results. It can be understood and computed as an average of strata-specific family wise error rates and involves the prevalences of these strata. A major issue of this concept is that the prevalences are usually unknown in practice, so that the population-wise error rate cannot be directly controlled. Instead, one could use an estimator based on the given sample, like their maximum-likelihood estimator under a multinomial distribution. In this article, we demonstrate through simulations that this does not substantially inflate the true population-wise error rate. We differentiate between the expected population-wise error rate, which is almost perfectly controlled, and study-specific values of the population-wise error rate which are conditioned on all subgroup sample sizes and vary within a narrow range. Thereby, we consider up to eight different overlapping populations and moderate to large sample sizes. In these settings, we also consider the maximum strata-wise family wise error rate, which is found to be, on average, at least bounded by twice the significance level used for population-wise error rate control.</p>","PeriodicalId":22038,"journal":{"name":"Statistical Methods in Medical Research","volume":" ","pages":"9622802241307237"},"PeriodicalIF":1.6000,"publicationDate":"2025-01-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Statistical Methods in Medical Research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1177/09622802241307237","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"HEALTH CARE SCIENCES & SERVICES","Score":null,"Total":0}
引用次数: 0

Abstract

The population-wise error rate is a type I error rate for clinical trials with multiple target populations. In such trials, a treatment is tested for its efficacy in each population. The population-wise error rate is defined as the probability that a randomly selected, future patient will be exposed to an inefficient treatment based on the study results. It can be understood and computed as an average of strata-specific family wise error rates and involves the prevalences of these strata. A major issue of this concept is that the prevalences are usually unknown in practice, so that the population-wise error rate cannot be directly controlled. Instead, one could use an estimator based on the given sample, like their maximum-likelihood estimator under a multinomial distribution. In this article, we demonstrate through simulations that this does not substantially inflate the true population-wise error rate. We differentiate between the expected population-wise error rate, which is almost perfectly controlled, and study-specific values of the population-wise error rate which are conditioned on all subgroup sample sizes and vary within a narrow range. Thereby, we consider up to eight different overlapping populations and moderate to large sample sizes. In these settings, we also consider the maximum strata-wise family wise error rate, which is found to be, on average, at least bounded by twice the significance level used for population-wise error rate control.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
估计患病率对总体误差率的影响。
总体错误率是具有多个目标人群的临床试验的I型错误率。在这类试验中,测试一种治疗方法在每个人群中的疗效。总体误差率定义为随机选择的未来患者根据研究结果接受无效治疗的概率。它可以理解和计算为特定地层的家庭误差率的平均值,并涉及这些地层的患病率。这个概念的一个主要问题是,在实践中,患病率通常是未知的,因此不能直接控制人口错误率。相反,我们可以使用基于给定样本的估计量,就像多项式分布下的最大似然估计量一样。在本文中,我们通过模拟证明,这并不会大大提高真实的人口误差率。我们区分了几乎完全控制的预期总体误差率和研究特定的总体误差率值,后者取决于所有子组样本量,并在一个狭窄的范围内变化。因此,我们考虑多达8个不同的重叠种群和中等到较大的样本量。在这些设置中,我们还考虑了最大分层明智的家庭明智错误率,发现平均而言,至少有两倍于用于总体明智错误率控制的显著性水平。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Statistical Methods in Medical Research
Statistical Methods in Medical Research 医学-数学与计算生物学
CiteScore
4.10
自引率
4.30%
发文量
127
审稿时长
>12 weeks
期刊介绍: Statistical Methods in Medical Research is a peer reviewed scholarly journal and is the leading vehicle for articles in all the main areas of medical statistics and an essential reference for all medical statisticians. This unique journal is devoted solely to statistics and medicine and aims to keep professionals abreast of the many powerful statistical techniques now available to the medical profession. This journal is a member of the Committee on Publication Ethics (COPE)
期刊最新文献
Extension of Fisher's least significant difference method to multi-armed group-sequential response-adaptive designs. Generalized framework for identifying meaningful heterogenous treatment effects in observational studies: A parametric data-adaptive G-computation approach. The relative efficiency of staircase and stepped wedge cluster randomised trial designs. Bayesian mixture models for phylogenetic source attribution from consensus sequences and time since infection estimates. Jointly assessing multiple endpoints in pilot and feasibility studies.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1