{"title":"The effect of estimating prevalences on the population-wise error rate.","authors":"Remi Luschei, Werner Brannath","doi":"10.1177/09622802241307237","DOIUrl":null,"url":null,"abstract":"<p><p>The population-wise error rate is a type I error rate for clinical trials with multiple target populations. In such trials, a treatment is tested for its efficacy in each population. The population-wise error rate is defined as the probability that a randomly selected, future patient will be exposed to an inefficient treatment based on the study results. It can be understood and computed as an average of strata-specific family wise error rates and involves the prevalences of these strata. A major issue of this concept is that the prevalences are usually unknown in practice, so that the population-wise error rate cannot be directly controlled. Instead, one could use an estimator based on the given sample, like their maximum-likelihood estimator under a multinomial distribution. In this article, we demonstrate through simulations that this does not substantially inflate the true population-wise error rate. We differentiate between the expected population-wise error rate, which is almost perfectly controlled, and study-specific values of the population-wise error rate which are conditioned on all subgroup sample sizes and vary within a narrow range. Thereby, we consider up to eight different overlapping populations and moderate to large sample sizes. In these settings, we also consider the maximum strata-wise family wise error rate, which is found to be, on average, at least bounded by twice the significance level used for population-wise error rate control.</p>","PeriodicalId":22038,"journal":{"name":"Statistical Methods in Medical Research","volume":" ","pages":"9622802241307237"},"PeriodicalIF":1.6000,"publicationDate":"2025-01-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Statistical Methods in Medical Research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1177/09622802241307237","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"HEALTH CARE SCIENCES & SERVICES","Score":null,"Total":0}
引用次数: 0
Abstract
The population-wise error rate is a type I error rate for clinical trials with multiple target populations. In such trials, a treatment is tested for its efficacy in each population. The population-wise error rate is defined as the probability that a randomly selected, future patient will be exposed to an inefficient treatment based on the study results. It can be understood and computed as an average of strata-specific family wise error rates and involves the prevalences of these strata. A major issue of this concept is that the prevalences are usually unknown in practice, so that the population-wise error rate cannot be directly controlled. Instead, one could use an estimator based on the given sample, like their maximum-likelihood estimator under a multinomial distribution. In this article, we demonstrate through simulations that this does not substantially inflate the true population-wise error rate. We differentiate between the expected population-wise error rate, which is almost perfectly controlled, and study-specific values of the population-wise error rate which are conditioned on all subgroup sample sizes and vary within a narrow range. Thereby, we consider up to eight different overlapping populations and moderate to large sample sizes. In these settings, we also consider the maximum strata-wise family wise error rate, which is found to be, on average, at least bounded by twice the significance level used for population-wise error rate control.
期刊介绍:
Statistical Methods in Medical Research is a peer reviewed scholarly journal and is the leading vehicle for articles in all the main areas of medical statistics and an essential reference for all medical statisticians. This unique journal is devoted solely to statistics and medicine and aims to keep professionals abreast of the many powerful statistical techniques now available to the medical profession. This journal is a member of the Committee on Publication Ethics (COPE)