{"title":"Estimating target population treatment effects in meta-analysis with individual participant-level data.","authors":"Hwanhee Hong, Lu Liu, Elizabeth A Stuart","doi":"10.1177/09622802241307642","DOIUrl":null,"url":null,"abstract":"<p><p>Meta-analysis of randomized controlled trials is commonly used to evaluate treatments and inform policy decisions because it provides comprehensive summaries of all available evidence. However, meta-analyses are limited to draw population inference of treatment effects because they usually do not define target populations of interest specifically, and results of the individual randomized controlled trials in those meta-analyses may not generalize to the target populations. To leverage evidence from multiple randomized controlled trials in the generalizability context, we bridge the ideas from meta-analysis and causal inference. We integrate meta-analysis with causal inference approaches estimating target population average treatment effect. We evaluate the performance of the methods via simulation studies and apply the methods to generalize meta-analysis results from randomized controlled trials of treatments on schizophrenia to adults with schizophrenia who present to usual care settings in the United States. Our simulation results show that all methods perform comparably and well across different settings. The data analysis results show that the treatment effect in the target population is meaningful, although the effect size is smaller than the sample average treatment effect. We recommend applying multiple methods and comparing the results to ensure robustness, rather than relying on a single method.</p>","PeriodicalId":22038,"journal":{"name":"Statistical Methods in Medical Research","volume":" ","pages":"9622802241307642"},"PeriodicalIF":1.6000,"publicationDate":"2025-01-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Statistical Methods in Medical Research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1177/09622802241307642","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"HEALTH CARE SCIENCES & SERVICES","Score":null,"Total":0}
引用次数: 0
Abstract
Meta-analysis of randomized controlled trials is commonly used to evaluate treatments and inform policy decisions because it provides comprehensive summaries of all available evidence. However, meta-analyses are limited to draw population inference of treatment effects because they usually do not define target populations of interest specifically, and results of the individual randomized controlled trials in those meta-analyses may not generalize to the target populations. To leverage evidence from multiple randomized controlled trials in the generalizability context, we bridge the ideas from meta-analysis and causal inference. We integrate meta-analysis with causal inference approaches estimating target population average treatment effect. We evaluate the performance of the methods via simulation studies and apply the methods to generalize meta-analysis results from randomized controlled trials of treatments on schizophrenia to adults with schizophrenia who present to usual care settings in the United States. Our simulation results show that all methods perform comparably and well across different settings. The data analysis results show that the treatment effect in the target population is meaningful, although the effect size is smaller than the sample average treatment effect. We recommend applying multiple methods and comparing the results to ensure robustness, rather than relying on a single method.
期刊介绍:
Statistical Methods in Medical Research is a peer reviewed scholarly journal and is the leading vehicle for articles in all the main areas of medical statistics and an essential reference for all medical statisticians. This unique journal is devoted solely to statistics and medicine and aims to keep professionals abreast of the many powerful statistical techniques now available to the medical profession. This journal is a member of the Committee on Publication Ethics (COPE)