Reducing Healing Period with DDM/rhBMP-2 Grafting for Early Loading in Dental Implant Surgery.

IF 4.4 4区 医学 Q2 CELL & TISSUE ENGINEERING Tissue engineering and regenerative medicine Pub Date : 2025-02-01 Epub Date: 2025-01-18 DOI:10.1007/s13770-024-00689-3
Jeong-Kui Ku, Jung-Hoon Lim, Jung-Ah Lim, In-Woong Um, Yu-Mi Kim, Pil-Young Yun
{"title":"Reducing Healing Period with DDM/rhBMP-2 Grafting for Early Loading in Dental Implant Surgery.","authors":"Jeong-Kui Ku, Jung-Hoon Lim, Jung-Ah Lim, In-Woong Um, Yu-Mi Kim, Pil-Young Yun","doi":"10.1007/s13770-024-00689-3","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Traditionally, dental implants require a healing period of 4 to 9 months for osseointegration, with longer recovery times considered when bone grafting is needed. This retrospective study evaluates the clinical efficacy of demineralized dentin matrix (DDM) combined with recombinant human bone morphogenetic protein-2 (rhBMP-2) during dental implant placement to expedite the osseointegration period for early loading.</p><p><strong>Methods: </strong>Thirty patients (17 male, 13 female; mean age 55.0 ± 8.8 years) requiring bone grafts due to implant fixture exposure (more than four threads; ≥ 3.2 mm) were included, with a total of 96 implants placed. Implants were inserted using a two-stage protocol with DDM/rhBMP-2 grafts. Early loading was initiated at two months postoperatively in the mandible and three months in the maxilla. Clinical outcomes evaluated included primary and secondary stability (implant stability quotient values), healing period, bone width, and marginal bone level assessed via cone-beam computed tomography.</p><p><strong>Results: </strong>All implants successfully supported final prosthetics with a torque of 50Ncm, without any osseointegration failures. The average healing period was 69.6 days in the mandible and 90.5 days in the maxilla, with significantly higher secondary stability in the mandible (80.7 ± 6.7) compared to the maxilla (73.0 ± 9.2, p < 0.001). Histological analysis confirmed new bone formation and vascularization.</p><p><strong>Conclusion: </strong>DDM/rhBMP-2 grafting appears to significantly reduce the healing period, enabling early loading with stable and favorable clinical outcomes.</p>","PeriodicalId":23126,"journal":{"name":"Tissue engineering and regenerative medicine","volume":" ","pages":"261-271"},"PeriodicalIF":4.4000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11794915/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Tissue engineering and regenerative medicine","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s13770-024-00689-3","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/18 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"CELL & TISSUE ENGINEERING","Score":null,"Total":0}
引用次数: 0

Abstract

Background: Traditionally, dental implants require a healing period of 4 to 9 months for osseointegration, with longer recovery times considered when bone grafting is needed. This retrospective study evaluates the clinical efficacy of demineralized dentin matrix (DDM) combined with recombinant human bone morphogenetic protein-2 (rhBMP-2) during dental implant placement to expedite the osseointegration period for early loading.

Methods: Thirty patients (17 male, 13 female; mean age 55.0 ± 8.8 years) requiring bone grafts due to implant fixture exposure (more than four threads; ≥ 3.2 mm) were included, with a total of 96 implants placed. Implants were inserted using a two-stage protocol with DDM/rhBMP-2 grafts. Early loading was initiated at two months postoperatively in the mandible and three months in the maxilla. Clinical outcomes evaluated included primary and secondary stability (implant stability quotient values), healing period, bone width, and marginal bone level assessed via cone-beam computed tomography.

Results: All implants successfully supported final prosthetics with a torque of 50Ncm, without any osseointegration failures. The average healing period was 69.6 days in the mandible and 90.5 days in the maxilla, with significantly higher secondary stability in the mandible (80.7 ± 6.7) compared to the maxilla (73.0 ± 9.2, p < 0.001). Histological analysis confirmed new bone formation and vascularization.

Conclusion: DDM/rhBMP-2 grafting appears to significantly reduce the healing period, enabling early loading with stable and favorable clinical outcomes.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
DDM/rhBMP-2移植在牙种植手术早期负荷中缩短愈合期。
传统上,种植体需要4 - 9个月的愈合时间来实现骨融合,如果需要植骨,则需要更长的恢复时间。本回顾性研究评估了脱矿牙本质基质(DDM)联合重组人骨形态发生蛋白-2 (rhBMP-2)在牙种植体植入过程中加速骨整合期的临床疗效。方法:30例患者(男17例,女13例;包括平均年龄55.0±8.8岁,因种植体固定物暴露(超过4根螺纹,≥3.2 mm)而需要骨移植的患者,共放置96个种植体。植入物采用DDM/rhBMP-2移植物的两阶段方案插入。下颌骨术后2个月和上颌骨术后3个月开始早期加载。评估的临床结果包括初级和次级稳定性(种植体稳定性商值)、愈合时间、骨宽度和通过锥形束计算机断层扫描评估的边缘骨水平。结果:所有种植体均成功支撑最终修复体,扭矩为50Ncm,无骨整合失败。下颌骨平均愈合时间为69.6 d,上颌骨平均愈合时间为90.5 d,下颌骨的二次稳定性(80.7±6.7)明显高于上颌骨(73.0±9.2)。结论:DDM/rhBMP-2移植可显著缩短愈合时间,可实现早期加载,临床效果稳定良好。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Tissue engineering and regenerative medicine
Tissue engineering and regenerative medicine CELL & TISSUE ENGINEERING-ENGINEERING, BIOMEDICAL
CiteScore
6.80
自引率
5.60%
发文量
83
审稿时长
6-12 weeks
期刊介绍: Tissue Engineering and Regenerative Medicine (Tissue Eng Regen Med, TERM), the official journal of the Korean Tissue Engineering and Regenerative Medicine Society, is a publication dedicated to providing research- based solutions to issues related to human diseases. This journal publishes articles that report substantial information and original findings on tissue engineering, medical biomaterials, cells therapy, stem cell biology and regenerative medicine.
期刊最新文献
Efficacy of Human-Induced Pluripotent Stem Cell-Derived Neural Progenitor Cell Replacement Therapy in a Vascular Dementia Animal Model. Antioxidant Peptide-Based Nanocarriers for Delivering Wound Healing Agents. Innovations in Vascular Repair from Mechanical Intervention to Regenerative Therapies. Rapid Video Analysis for Contraction Synchrony of Human Induced Pluripotent Stem Cells-Derived Cardiac Tissues. Regenerative Functions of Regulatory T Cells and Current Strategies Utilizing Mesenchymal Stem Cells in Immunomodulatory Tissue Regeneration.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1