{"title":"Dipeptidyl peptidase 4 is a cofactor for porcine epidemic diarrhea virus infection","authors":"Yanjie Huang , Jiayun Wu , Xueli Zhang , Shuai Zhang , Shenglong Wu , Wenbin Bao","doi":"10.1016/j.vetmic.2025.110370","DOIUrl":null,"url":null,"abstract":"<div><div>Porcine epidemic diarrhea virus (PEDV) is a member of the genus <em>Alphacoronavirus</em> in the family <em>Coronaviridae</em>, which has a mortality rate of up to 100 % in neonatal piglets and causes huge economic losses to the pig industry. The target cells of PEDV infection are porcine small intestinal epithelial cells, and the mechanism of PEDV invasion remains unclear. Our study found that dipeptidyl peptidase 4 (DPP4) acts as a cofactor for PEDV infection by promoting PEDV invasion and replication. Firstly, we mapped the expression profile of DPP4 in different tissues of 7-day-old piglets and found that DPP4 was highly expressed in the liver, lung, kidney, duodenum, jejunum, and ileum tissues of piglets. In addition, the immunohistochemical results showed that DPP4 was mainly distributed at the apical of intestinal villous epithelial cells in the jejunum of piglets. Further studies revealed that DPP4 expression was significantly lower in PEDV-infected porcine jejunal tissues and IPEC-J2 cells than in uninfected controls. PEDV invasion and replication could be inhibited by DPP4 inhibitor and specific antibody. Moreover, DPP4 knockout was able to significantly inhibit PEDV infection. Then, we found that endogenous DPP4 interacted with PEDV, and that preincubation of PEDV with endogenous DPP4 reduced viral infection. Finally, we predicted the docking of DPP4 and PEDV-S1-RBD proteins in silico, showing a strong binding tendency. Taken together, our study supports the hypothesis that DPP4 is a cofactor for PEDV infection.</div></div>","PeriodicalId":23551,"journal":{"name":"Veterinary microbiology","volume":"301 ","pages":"Article 110370"},"PeriodicalIF":2.4000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Veterinary microbiology","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0378113525000057","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Porcine epidemic diarrhea virus (PEDV) is a member of the genus Alphacoronavirus in the family Coronaviridae, which has a mortality rate of up to 100 % in neonatal piglets and causes huge economic losses to the pig industry. The target cells of PEDV infection are porcine small intestinal epithelial cells, and the mechanism of PEDV invasion remains unclear. Our study found that dipeptidyl peptidase 4 (DPP4) acts as a cofactor for PEDV infection by promoting PEDV invasion and replication. Firstly, we mapped the expression profile of DPP4 in different tissues of 7-day-old piglets and found that DPP4 was highly expressed in the liver, lung, kidney, duodenum, jejunum, and ileum tissues of piglets. In addition, the immunohistochemical results showed that DPP4 was mainly distributed at the apical of intestinal villous epithelial cells in the jejunum of piglets. Further studies revealed that DPP4 expression was significantly lower in PEDV-infected porcine jejunal tissues and IPEC-J2 cells than in uninfected controls. PEDV invasion and replication could be inhibited by DPP4 inhibitor and specific antibody. Moreover, DPP4 knockout was able to significantly inhibit PEDV infection. Then, we found that endogenous DPP4 interacted with PEDV, and that preincubation of PEDV with endogenous DPP4 reduced viral infection. Finally, we predicted the docking of DPP4 and PEDV-S1-RBD proteins in silico, showing a strong binding tendency. Taken together, our study supports the hypothesis that DPP4 is a cofactor for PEDV infection.
IF 24.5 1区 物理与天体物理ACS PhotonicsPub Date : 2022-05-01DOI: 10.1136/gutjnl-2020-322595
Wenzel M Hackeng, Lodewijk A A Brosens, Joo Young Kim, Roderick O'Sullivan, You-Na Sung, Ta-Chiang Liu, Dengfeng Cao, Michelle Heayn, Jacqueline Brosnan-Cashman, Soyeon An, Folkert H M Morsink, Charlotte M Heidsma, Gerlof D Valk, Menno R Vriens, Els Nieveen van Dijkum, G Johan A Offerhaus, Koen M A Dreijerink, Herbert Zeh, Amer H Zureikat, Melissa Hogg, Kenneth Lee, David Geller, J Wallis Marsh, Alessandro Paniccia, Melanie Ongchin, James F Pingpank, Nathan Bahary, Muaz Aijazi, Randall Brand, Jennifer Chennat, Rohit Das, Kenneth E Fasanella, Asif Khalid, Kevin McGrath, Savreet Sarkaria, Harkirat Singh, Adam Slivka, Michael Nalesnik, Xiaoli Han, Marina N Nikiforova, Rita Teresa Lawlor, Andrea Mafficini, Boris Rusev, Vincenzo Corbo, Claudio Luchini, Samantha Bersani, Antonio Pea, Sara Cingarlini, Luca Landoni, Roberto Salvia, Massimo Milione, Michele Milella, Aldo Scarpa, Seung-Mo Hong, Christopher M Heaphy, Aatur D Singhi
期刊介绍:
Veterinary Microbiology is concerned with microbial (bacterial, fungal, viral) diseases of domesticated vertebrate animals (livestock, companion animals, fur-bearing animals, game, poultry, fish) that supply food, other useful products or companionship. In addition, Microbial diseases of wild animals living in captivity, or as members of the feral fauna will also be considered if the infections are of interest because of their interrelation with humans (zoonoses) and/or domestic animals. Studies of antimicrobial resistance are also included, provided that the results represent a substantial advance in knowledge. Authors are strongly encouraged to read - prior to submission - the Editorials (''Scope or cope'' and ''Scope or cope II'') published previously in the journal. The Editors reserve the right to suggest submission to another journal for those papers which they feel would be more appropriate for consideration by that journal.
Original research papers of high quality and novelty on aspects of control, host response, molecular biology, pathogenesis, prevention, and treatment of microbial diseases of animals are published. Papers dealing primarily with immunology, epidemiology, molecular biology and antiviral or microbial agents will only be considered if they demonstrate a clear impact on a disease. Papers focusing solely on diagnostic techniques (such as another PCR protocol or ELISA) will not be published - focus should be on a microorganism and not on a particular technique. Papers only reporting microbial sequences, transcriptomics data, or proteomics data will not be considered unless the results represent a substantial advance in knowledge.
Drug trial papers will be considered if they have general application or significance. Papers on the identification of microorganisms will also be considered, but detailed taxonomic studies do not fall within the scope of the journal. Case reports will not be published, unless they have general application or contain novel aspects. Papers of geographically limited interest, which repeat what had been established elsewhere will not be considered. The readership of the journal is global.