Preventive effect of flavor/fragrance components on SARS-CoV-2 infections

IF 4.8 Q1 MICROBIOLOGY Current Research in Microbial Sciences Pub Date : 2025-01-01 DOI:10.1016/j.crmicr.2024.100335
Hidenobu Senpuku , Hiroyuki Kato
{"title":"Preventive effect of flavor/fragrance components on SARS-CoV-2 infections","authors":"Hidenobu Senpuku ,&nbsp;Hiroyuki Kato","doi":"10.1016/j.crmicr.2024.100335","DOIUrl":null,"url":null,"abstract":"<div><div>The SARS-CoV-2 infection has spread to various areas of the world, and the number of infected people, seriously ill people, and deaths have increased in 2020∼2023. It is important to suppress the spread of virus from infected people to non-infected people in order to prevent the disease from becoming more severe. To protect widespread of virus, flavor/fragrances composition was selected as a convenient effective material to protect the inhibition. It was previously investigated whether flavor/fragrances composition inhibit the binding between the receptor-binding domain (RBD) of the SARS-CoV-2 spike protein and host angiotensin converting enzyme 2 (ACE2) in the infection model assay. This binding lead to natural infection of SARS-CoV-2 to tissues. In a previous report, it was found that some Flavor/fragrances compositions strongly inhibited the binding between RBD and ACE2. To clarify whether these flavor/fragrances compositions actually inhibit the infection of SARS-CoV-2, the inhibition assay of infection to VeroE6/TMPRSS2 cells, the inhibition model in vitro, were performed by the treatment of these compositions. Some flavor/fragrances compositions excepting for cinnamyl alcohol, 0.25 %, strongly inhibited the infection of SARS-CoV-2 to VeroE6/TMPRSS2 cells because cinnamyl alcohol could not be completely melted by PBS (pH 7.4) containing 1.5 % Tween 20 and 0.5 % BSA. Among fragrance compounds, cinnamon flavor and cinnamon mint had stronger inhibition effects on the infection effects on SARS-C0V-2 than others. The strategy of using flavor/fragrances compositions such as cinnamon flavor and cinnamon mint may be useful to protect widespread of SARS-CoV-2 in their daily lives.</div></div>","PeriodicalId":34305,"journal":{"name":"Current Research in Microbial Sciences","volume":"8 ","pages":"Article 100335"},"PeriodicalIF":4.8000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11743867/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Research in Microbial Sciences","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666517424001184","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

The SARS-CoV-2 infection has spread to various areas of the world, and the number of infected people, seriously ill people, and deaths have increased in 2020∼2023. It is important to suppress the spread of virus from infected people to non-infected people in order to prevent the disease from becoming more severe. To protect widespread of virus, flavor/fragrances composition was selected as a convenient effective material to protect the inhibition. It was previously investigated whether flavor/fragrances composition inhibit the binding between the receptor-binding domain (RBD) of the SARS-CoV-2 spike protein and host angiotensin converting enzyme 2 (ACE2) in the infection model assay. This binding lead to natural infection of SARS-CoV-2 to tissues. In a previous report, it was found that some Flavor/fragrances compositions strongly inhibited the binding between RBD and ACE2. To clarify whether these flavor/fragrances compositions actually inhibit the infection of SARS-CoV-2, the inhibition assay of infection to VeroE6/TMPRSS2 cells, the inhibition model in vitro, were performed by the treatment of these compositions. Some flavor/fragrances compositions excepting for cinnamyl alcohol, 0.25 %, strongly inhibited the infection of SARS-CoV-2 to VeroE6/TMPRSS2 cells because cinnamyl alcohol could not be completely melted by PBS (pH 7.4) containing 1.5 % Tween 20 and 0.5 % BSA. Among fragrance compounds, cinnamon flavor and cinnamon mint had stronger inhibition effects on the infection effects on SARS-C0V-2 than others. The strategy of using flavor/fragrances compositions such as cinnamon flavor and cinnamon mint may be useful to protect widespread of SARS-CoV-2 in their daily lives.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
风味/香味成分对SARS-CoV-2感染的预防作用
SARS-CoV-2感染已扩散到世界各地,2020 ~ 2023年的感染者、重症患者和死亡人数都在增加。重要的是要抑制病毒从感染者向非感染者的传播,以防止疾病变得更加严重。为了保护病毒的传播,选择香精/香料组合物作为方便有效的材料来保护病毒的抑制作用。在感染模型试验中,研究人员先前研究了风味/香料成分是否抑制SARS-CoV-2刺突蛋白受体结合域(RBD)与宿主血管紧张素转换酶2 (ACE2)之间的结合。这种结合导致SARS-CoV-2对组织的自然感染。在先前的报道中,发现一些风味/香味成分强烈抑制RBD与ACE2的结合。为了明确这些香料/香料组合物是否真的抑制了SARS-CoV-2的感染,我们通过这些组合物处理对体外抑制模型VeroE6/TMPRSS2细胞的感染进行了抑制实验。除肉桂醇(0.25%)外,其他风味/香料成分对VeroE6/TMPRSS2细胞的感染有较强的抑制作用,因为肉桂醇不能被含有1.5% Tween 20和0.5% BSA的PBS (pH 7.4)完全融化。香料化合物中,肉桂香精和肉桂薄荷对SARS-C0V-2的感染抑制作用较强。使用肉桂香精和肉桂薄荷等香料/香料组合物的策略可能有助于保护日常生活中SARS-CoV-2的广泛传播。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Current Research in Microbial Sciences
Current Research in Microbial Sciences Immunology and Microbiology-Immunology and Microbiology (miscellaneous)
CiteScore
7.90
自引率
0.00%
发文量
81
审稿时长
66 days
期刊最新文献
Human microbiome in post-acute COVID-19 syndrome (PACS) Multifaceted virus-like particles: Navigating towards broadly effective influenza A virus vaccines Evaluation and identification of metabolites produced by Cytobacillus firmus in the interaction with Arabidopsis thaliana plants and their effect on Solanum lycopersicum Antibacterial potential and phytochemical analysis of two ethnomedicinally important plants The role of universal stress protein Usp1413 in meropenem adaptive resistance and environmental stress responses in Acinetobacter baumannii
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1