Mehdi Boudissa, Gaël Kerschbaumer, Guillaume Cavalié, Jean-François Desrousseaux, Alexis Perrin, Georges Naïm Abi Lahoud, Julien Decaudain, Amélie Léglise, John Sledge, Benjamin Bénac, Jérémy Ouali, Jérôme Tonetti
{"title":"Radiation Exposure Analysis on 274 Patients With Vertebral Augmentation Using the Surgivisio Intraoperative Navigation System.","authors":"Mehdi Boudissa, Gaël Kerschbaumer, Guillaume Cavalié, Jean-François Desrousseaux, Alexis Perrin, Georges Naïm Abi Lahoud, Julien Decaudain, Amélie Léglise, John Sledge, Benjamin Bénac, Jérémy Ouali, Jérôme Tonetti","doi":"10.14444/8701","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Surgeons' reliance on intraoperative fluoroscopy during vertebroplasty procedures has raised concerns regarding the level of patient and surgeon radiation. Navigation systems have shown a potential to reduce the overall patient and medical staff exposure during dose exposure studies. The main objective of this study was to determine whether the Surgivisio platform (eCential Robotics, France), a unified imaging and navigation platform, lowers the patient dose during routine clinical usage as compared with published fluoroscopy and other navigation options that are published in the literature.</p><p><strong>Methods: </strong>To accomplish this, we evaluated the radiation exposure dose during routine vertebroplasty procedures in which the surgeon was not trying to limit radiation and then compared the results to best-case dose assessment studies. Since a decreased radiation dose can lead to decreased image quality, we also quantified the surgeon's perception of image quality and ease of use. Two hundred and seventy-four Surgivisio-assisted vertebral augmentations were pooled from a broader 1694-patient protocol (not focusing on radiation outcomes) and analyzed.</p><p><strong>Results: </strong>We measured a median dose-area product and effective dose equal to 3.47 Gy.cm² and 0.81 mSv. The 3-dimensional image acquisitions contributed to 56.3% of the total dose-area product. When screening the literature, fluoroscopy dose levels (8.37-15.1 Gy.cm²) and navigation dose levels (9.12-9.83 Gy.cm²) were generally higher than those delivered with the Surgivisio protocol. Surgeon satisfaction for image quality and overall system experience was 95.8% and 85% for ease of use.</p><p><strong>Conclusions: </strong>The Surgivisio platform provided surgeons with high-quality images and ease of use. Since the surgeon is out of the room during the 3-dimensional image acquisition, this also substantially decreased their radiation exposure. This study demonstrates the efficiency of the Surgivisio platform to assist surgeons during vertebral augmentations, as the reported radiation levels are reduced in routine cases compared with published scenarios reported for other guidance methods.</p>","PeriodicalId":38486,"journal":{"name":"International Journal of Spine Surgery","volume":" ","pages":""},"PeriodicalIF":1.7000,"publicationDate":"2025-01-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Spine Surgery","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.14444/8701","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"SURGERY","Score":null,"Total":0}
引用次数: 0
Abstract
Background: Surgeons' reliance on intraoperative fluoroscopy during vertebroplasty procedures has raised concerns regarding the level of patient and surgeon radiation. Navigation systems have shown a potential to reduce the overall patient and medical staff exposure during dose exposure studies. The main objective of this study was to determine whether the Surgivisio platform (eCential Robotics, France), a unified imaging and navigation platform, lowers the patient dose during routine clinical usage as compared with published fluoroscopy and other navigation options that are published in the literature.
Methods: To accomplish this, we evaluated the radiation exposure dose during routine vertebroplasty procedures in which the surgeon was not trying to limit radiation and then compared the results to best-case dose assessment studies. Since a decreased radiation dose can lead to decreased image quality, we also quantified the surgeon's perception of image quality and ease of use. Two hundred and seventy-four Surgivisio-assisted vertebral augmentations were pooled from a broader 1694-patient protocol (not focusing on radiation outcomes) and analyzed.
Results: We measured a median dose-area product and effective dose equal to 3.47 Gy.cm² and 0.81 mSv. The 3-dimensional image acquisitions contributed to 56.3% of the total dose-area product. When screening the literature, fluoroscopy dose levels (8.37-15.1 Gy.cm²) and navigation dose levels (9.12-9.83 Gy.cm²) were generally higher than those delivered with the Surgivisio protocol. Surgeon satisfaction for image quality and overall system experience was 95.8% and 85% for ease of use.
Conclusions: The Surgivisio platform provided surgeons with high-quality images and ease of use. Since the surgeon is out of the room during the 3-dimensional image acquisition, this also substantially decreased their radiation exposure. This study demonstrates the efficiency of the Surgivisio platform to assist surgeons during vertebral augmentations, as the reported radiation levels are reduced in routine cases compared with published scenarios reported for other guidance methods.
期刊介绍:
The International Journal of Spine Surgery is the official scientific journal of ISASS, the International Intradiscal Therapy Society, the Pittsburgh Spine Summit, and the Büttner-Janz Spinefoundation, and is an official partner of the Southern Neurosurgical Society. The goal of the International Journal of Spine Surgery is to promote and disseminate online the most up-to-date scientific and clinical research into innovations in motion preservation and new spinal surgery technology, including basic science, biologics, and tissue engineering. The Journal is dedicated to educating spine surgeons worldwide by reporting on the scientific basis, indications, surgical techniques, complications, outcomes, and follow-up data for promising spinal procedures.