{"title":"Gene regulatory network inference based on modified adaptive lasso.","authors":"Chao Li, Xiaoran Huang, Xiao Luo, Xiaohui Lin","doi":"10.1142/S0219720024500264","DOIUrl":null,"url":null,"abstract":"<p><p>Gene regulatory networks (GRNs) reveal the regulatory interactions among genes and provide a visual tool to explain biological processes. However, how to identify direct relations among genes from gene expression data in the case of high-dimensional and small samples is a critical challenge. In this paper, we proposed a new GRN inference method based on a modified adaptive least absolute shrinkage and selection operator (MALasso). MALasso expands the number of samples based on the distance correlation and defines a new weighting manner for adaptive lasso to remove false positive edges of the networks in the iterative process. Simulated data and gene expression data from DREAM challenge were used to validate the performance of the proposed method MALasso. The comparison results among MALasso, adaptive lasso and other six state-of-the-art methods show that MALasso outperformed the competition methods in AUROCC and AUPRC in most cases and had a better ability to distinguish direct edges from indirect ones. Hence, by modifying the adaptive weighting manner of adaptive lasso, MALasso can detect linear and nonlinear relations, remove the false positive edges and identify direct relations among genes more accurately.</p>","PeriodicalId":48910,"journal":{"name":"Journal of Bioinformatics and Computational Biology","volume":" ","pages":"2450026"},"PeriodicalIF":0.9000,"publicationDate":"2025-01-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Bioinformatics and Computational Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1142/S0219720024500264","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICAL & COMPUTATIONAL BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Gene regulatory networks (GRNs) reveal the regulatory interactions among genes and provide a visual tool to explain biological processes. However, how to identify direct relations among genes from gene expression data in the case of high-dimensional and small samples is a critical challenge. In this paper, we proposed a new GRN inference method based on a modified adaptive least absolute shrinkage and selection operator (MALasso). MALasso expands the number of samples based on the distance correlation and defines a new weighting manner for adaptive lasso to remove false positive edges of the networks in the iterative process. Simulated data and gene expression data from DREAM challenge were used to validate the performance of the proposed method MALasso. The comparison results among MALasso, adaptive lasso and other six state-of-the-art methods show that MALasso outperformed the competition methods in AUROCC and AUPRC in most cases and had a better ability to distinguish direct edges from indirect ones. Hence, by modifying the adaptive weighting manner of adaptive lasso, MALasso can detect linear and nonlinear relations, remove the false positive edges and identify direct relations among genes more accurately.
期刊介绍:
The Journal of Bioinformatics and Computational Biology aims to publish high quality, original research articles, expository tutorial papers and review papers as well as short, critical comments on technical issues associated with the analysis of cellular information.
The research papers will be technical presentations of new assertions, discoveries and tools, intended for a narrower specialist community. The tutorials, reviews and critical commentary will be targeted at a broader readership of biologists who are interested in using computers but are not knowledgeable about scientific computing, and equally, computer scientists who have an interest in biology but are not familiar with current thrusts nor the language of biology. Such carefully chosen tutorials and articles should greatly accelerate the rate of entry of these new creative scientists into the field.