Predicting Paediatric Brain Disorders from MRI Images Using Advanced Deep Learning Techniques.

IF 2.7 4区 医学 Q2 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS Neuroinformatics Pub Date : 2025-01-16 DOI:10.1007/s12021-024-09707-0
Yogesh Kumar, Priya Bhardwaj, Supriya Shrivastav, Kapil Mehta
{"title":"Predicting Paediatric Brain Disorders from MRI Images Using Advanced Deep Learning Techniques.","authors":"Yogesh Kumar, Priya Bhardwaj, Supriya Shrivastav, Kapil Mehta","doi":"10.1007/s12021-024-09707-0","DOIUrl":null,"url":null,"abstract":"<p><p>The problem at hand is the significant global health challenge posed by children's diseases, where timely and accurate diagnosis is crucial for effective treatment and management. Conventional diagnosis techniques are typical, use tedious processes and generate inaccurate results since they are executed by human beings and cause delays in treatment that can be fatal. Considering these and other shortcomings there exists a need to have more efficient and accurate solutions based on artificial intelligence. Machine learning and more specifically, deep learning algorithms are of great help in analysing medical and clinical images to detect as well as classify diseases. In this paper, we propose a system for detecting various childhood diseases using a range of advanced Convolutional Neural Network models like EfficientNetB0, EfficientNetB3, Xception, InceptionV3, MobileNetV2, VGG19, DenseNet169, ResNet50V2, ResNet152V2, and the hybrid architecture InceptionResNetV2. These models are trained on MRI images of paediatric brain disorders to achieve high prediction accuracy. We use data visualization techniques such as segmentation and contour-based feature extraction to extract regions of interest before feeding the data into the models. The models are optimized using both ADAM and RMSprop optimizers. EfficientNetB0, when optimized with RMSprop, achieves an accuracy of 94.59%, a loss of 0.44, and an RMSE of 0.66. InceptionResNetV2, optimized with ADAM, achieves the highest accuracy of 97.59%, while EfficientNetB0 demonstrates the lowest loss (0.25) and RMSE (0.5). We also evaluate the models based on their precision, learning curves, recall, computational time, and F1 score, highlighting the effectiveness of AI-driven approaches for the diagnosis and management of children's diseases.</p>","PeriodicalId":49761,"journal":{"name":"Neuroinformatics","volume":"23 2","pages":"9"},"PeriodicalIF":2.7000,"publicationDate":"2025-01-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neuroinformatics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s12021-024-09707-0","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

The problem at hand is the significant global health challenge posed by children's diseases, where timely and accurate diagnosis is crucial for effective treatment and management. Conventional diagnosis techniques are typical, use tedious processes and generate inaccurate results since they are executed by human beings and cause delays in treatment that can be fatal. Considering these and other shortcomings there exists a need to have more efficient and accurate solutions based on artificial intelligence. Machine learning and more specifically, deep learning algorithms are of great help in analysing medical and clinical images to detect as well as classify diseases. In this paper, we propose a system for detecting various childhood diseases using a range of advanced Convolutional Neural Network models like EfficientNetB0, EfficientNetB3, Xception, InceptionV3, MobileNetV2, VGG19, DenseNet169, ResNet50V2, ResNet152V2, and the hybrid architecture InceptionResNetV2. These models are trained on MRI images of paediatric brain disorders to achieve high prediction accuracy. We use data visualization techniques such as segmentation and contour-based feature extraction to extract regions of interest before feeding the data into the models. The models are optimized using both ADAM and RMSprop optimizers. EfficientNetB0, when optimized with RMSprop, achieves an accuracy of 94.59%, a loss of 0.44, and an RMSE of 0.66. InceptionResNetV2, optimized with ADAM, achieves the highest accuracy of 97.59%, while EfficientNetB0 demonstrates the lowest loss (0.25) and RMSE (0.5). We also evaluate the models based on their precision, learning curves, recall, computational time, and F1 score, highlighting the effectiveness of AI-driven approaches for the diagnosis and management of children's diseases.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用先进的深度学习技术从MRI图像预测儿童脑部疾病。
当前的问题是儿童疾病对全球健康构成的重大挑战,及时和准确的诊断对于有效治疗和管理至关重要。传统的诊断技术是典型的,使用繁琐的过程,产生不准确的结果,因为它们是由人类执行的,并导致可能致命的治疗延误。考虑到这些和其他缺点,我们需要基于人工智能的更有效、更准确的解决方案。机器学习,更具体地说,深度学习算法在分析医学和临床图像以检测和分类疾病方面有很大帮助。在本文中,我们提出了一个用于检测各种儿童疾病的系统,该系统使用了一系列先进的卷积神经网络模型,如EfficientNetB0、EfficientNetB3、Xception、InceptionV3、MobileNetV2、VGG19、DenseNet169、ResNet50V2、ResNet152V2和混合架构InceptionResNetV2。这些模型在小儿脑部疾病的MRI图像上进行训练,以达到较高的预测精度。在将数据输入模型之前,我们使用数据可视化技术,如分割和基于轮廓的特征提取来提取感兴趣的区域。使用ADAM和RMSprop优化器对模型进行了优化。使用RMSprop进行优化后,EfficientNetB0的准确率为94.59%,损失为0.44,RMSE为0.66。使用ADAM优化的InceptionResNetV2的准确率最高,达到97.59%,而效率netb0的损失最低(0.25),RMSE最低(0.5)。我们还根据模型的精度、学习曲线、召回率、计算时间和F1分数对模型进行了评估,强调了人工智能驱动方法在儿童疾病诊断和管理方面的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Neuroinformatics
Neuroinformatics 医学-计算机:跨学科应用
CiteScore
6.00
自引率
6.70%
发文量
54
审稿时长
3 months
期刊介绍: Neuroinformatics publishes original articles and reviews with an emphasis on data structure and software tools related to analysis, modeling, integration, and sharing in all areas of neuroscience research. The editors particularly invite contributions on: (1) Theory and methodology, including discussions on ontologies, modeling approaches, database design, and meta-analyses; (2) Descriptions of developed databases and software tools, and of the methods for their distribution; (3) Relevant experimental results, such as reports accompanie by the release of massive data sets; (4) Computational simulations of models integrating and organizing complex data; and (5) Neuroengineering approaches, including hardware, robotics, and information theory studies.
期刊最新文献
Generalized Coupled Matrix Tensor Factorization Method Based on Normalized Mutual Information for Simultaneous EEG-fMRI Data Analysis. Cardiac Heterogeneity Prediction by Cardio-Neural Network Simulation. Determination of the Time-frequency Features for Impulse Components in EEG Signals. Blood Flow Velocity Analysis in Cerebral Perforating Arteries on 7T 2D Phase Contrast MRI with an Open-Source Software Tool (SELMA). CDCG-UNet: Chaotic Optimization Assisted Brain Tumor Segmentation Based on Dilated Channel Gate Attention U-Net Model.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1