Development of secure infrastructure for advancing generative artificial intelligence research in healthcare at an academic medical center.

IF 4.7 2区 医学 Q1 COMPUTER SCIENCE, INFORMATION SYSTEMS Journal of the American Medical Informatics Association Pub Date : 2025-01-21 DOI:10.1093/jamia/ocaf005
Madelena Y Ng, Jarrod Helzer, Michael A Pfeffer, Tina Seto, Tina Hernandez-Boussard
{"title":"Development of secure infrastructure for advancing generative artificial intelligence research in healthcare at an academic medical center.","authors":"Madelena Y Ng, Jarrod Helzer, Michael A Pfeffer, Tina Seto, Tina Hernandez-Boussard","doi":"10.1093/jamia/ocaf005","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Generative AI, particularly large language models (LLMs), holds great potential for improving patient care and operational efficiency in healthcare. However, the use of LLMs is complicated by regulatory concerns around data security and patient privacy. This study aimed to develop and evaluate a secure infrastructure that allows researchers to safely leverage LLMs in healthcare while ensuring HIPAA compliance and promoting equitable AI.</p><p><strong>Materials and methods: </strong>We implemented a private Azure OpenAI Studio deployment with secure API-enabled endpoints for researchers. Two use cases were explored, detecting falls from electronic health records (EHR) notes and evaluating bias in mental health prediction using fairness-aware prompts.</p><p><strong>Results: </strong>The framework provided secure, HIPAA-compliant API access to LLMs, allowing researchers to handle sensitive data safely. Both use cases highlighted the secure infrastructure's capacity to protect sensitive patient data while supporting innovation.</p><p><strong>Discussion and conclusion: </strong>This centralized platform presents a scalable, secure, and HIPAA-compliant solution for healthcare institutions aiming to integrate LLMs into clinical research.</p>","PeriodicalId":50016,"journal":{"name":"Journal of the American Medical Informatics Association","volume":" ","pages":""},"PeriodicalIF":4.7000,"publicationDate":"2025-01-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the American Medical Informatics Association","FirstCategoryId":"91","ListUrlMain":"https://doi.org/10.1093/jamia/ocaf005","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

Background: Generative AI, particularly large language models (LLMs), holds great potential for improving patient care and operational efficiency in healthcare. However, the use of LLMs is complicated by regulatory concerns around data security and patient privacy. This study aimed to develop and evaluate a secure infrastructure that allows researchers to safely leverage LLMs in healthcare while ensuring HIPAA compliance and promoting equitable AI.

Materials and methods: We implemented a private Azure OpenAI Studio deployment with secure API-enabled endpoints for researchers. Two use cases were explored, detecting falls from electronic health records (EHR) notes and evaluating bias in mental health prediction using fairness-aware prompts.

Results: The framework provided secure, HIPAA-compliant API access to LLMs, allowing researchers to handle sensitive data safely. Both use cases highlighted the secure infrastructure's capacity to protect sensitive patient data while supporting innovation.

Discussion and conclusion: This centralized platform presents a scalable, secure, and HIPAA-compliant solution for healthcare institutions aiming to integrate LLMs into clinical research.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
在学术医疗中心开发安全基础设施,以推进医疗保健领域的生成式人工智能研究。
背景:生成式人工智能,特别是大型语言模型(llm),在改善医疗保健领域的患者护理和运营效率方面具有巨大潜力。然而,法律硕士的使用因数据安全和患者隐私方面的监管担忧而变得复杂。本研究旨在开发和评估一个安全的基础设施,使研究人员能够安全地利用医疗保健领域的法学硕士,同时确保符合HIPAA并促进公平的人工智能。材料和方法:我们实现了一个私有的Azure OpenAI Studio部署,为研究人员提供了安全的api支持端点。探索了两个用例,检测电子健康记录(EHR)笔记中的跌倒,并使用公平意识提示评估心理健康预测中的偏差。结果:该框架为llm提供了安全的、符合hipaa的API访问,使研究人员能够安全地处理敏感数据。这两个用例都突出了安全基础设施在支持创新的同时保护敏感患者数据的能力。讨论和结论:该集中式平台为旨在将llm集成到临床研究中的医疗机构提供了可扩展、安全且符合hipaa的解决方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of the American Medical Informatics Association
Journal of the American Medical Informatics Association 医学-计算机:跨学科应用
CiteScore
14.50
自引率
7.80%
发文量
230
审稿时长
3-8 weeks
期刊介绍: JAMIA is AMIA''s premier peer-reviewed journal for biomedical and health informatics. Covering the full spectrum of activities in the field, JAMIA includes informatics articles in the areas of clinical care, clinical research, translational science, implementation science, imaging, education, consumer health, public health, and policy. JAMIA''s articles describe innovative informatics research and systems that help to advance biomedical science and to promote health. Case reports, perspectives and reviews also help readers stay connected with the most important informatics developments in implementation, policy and education.
期刊最新文献
Efficacy of the mLab App: a randomized clinical trial for increasing HIV testing uptake using mobile technology. Using human factors methods to mitigate bias in artificial intelligence-based clinical decision support. Distributed, immutable, and transparent biomedical limited data set request management on multi-capacity network. Identifying stigmatizing and positive/preferred language in obstetric clinical notes using natural language processing. National COVID Cohort Collaborative data enhancements: a path for expanding common data models.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1