Agata Foryciarz, Nicole Gladish, David H Rehkopf, Sherri Rose
{"title":"Incorporating area-level social drivers of health in predictive algorithms using electronic health record data.","authors":"Agata Foryciarz, Nicole Gladish, David H Rehkopf, Sherri Rose","doi":"10.1093/jamia/ocaf009","DOIUrl":null,"url":null,"abstract":"<p><strong>Objectives: </strong>The inclusion of social drivers of health (SDOH) into predictive algorithms of health outcomes has potential for improving algorithm interpretation, performance, generalizability, and transportability. However, there are limitations in the availability, understanding, and quality of SDOH variables, as well as a lack of guidance on how to incorporate them into algorithms when appropriate to do so. As such, few published algorithms include SDOH, and there is substantial methodological variability among those that do. We argue that practitioners should consider the use of social indices and factors-a class of area-level measurements-given their accessibility, transparency, and quality.</p><p><strong>Results: </strong>We illustrate the process of using such indices in predictive algorithms, which includes the selection of appropriate indices for the outcome, measurement time, and geographic level, in a demonstrative example with the Kidney Failure Risk Equation.</p><p><strong>Discussion: </strong>Identifying settings where incorporating SDOH may be beneficial and incorporating them rigorously can help validate algorithms and assess generalizability.</p>","PeriodicalId":50016,"journal":{"name":"Journal of the American Medical Informatics Association","volume":" ","pages":""},"PeriodicalIF":4.7000,"publicationDate":"2025-01-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the American Medical Informatics Association","FirstCategoryId":"91","ListUrlMain":"https://doi.org/10.1093/jamia/ocaf009","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
Objectives: The inclusion of social drivers of health (SDOH) into predictive algorithms of health outcomes has potential for improving algorithm interpretation, performance, generalizability, and transportability. However, there are limitations in the availability, understanding, and quality of SDOH variables, as well as a lack of guidance on how to incorporate them into algorithms when appropriate to do so. As such, few published algorithms include SDOH, and there is substantial methodological variability among those that do. We argue that practitioners should consider the use of social indices and factors-a class of area-level measurements-given their accessibility, transparency, and quality.
Results: We illustrate the process of using such indices in predictive algorithms, which includes the selection of appropriate indices for the outcome, measurement time, and geographic level, in a demonstrative example with the Kidney Failure Risk Equation.
Discussion: Identifying settings where incorporating SDOH may be beneficial and incorporating them rigorously can help validate algorithms and assess generalizability.
期刊介绍:
JAMIA is AMIA''s premier peer-reviewed journal for biomedical and health informatics. Covering the full spectrum of activities in the field, JAMIA includes informatics articles in the areas of clinical care, clinical research, translational science, implementation science, imaging, education, consumer health, public health, and policy. JAMIA''s articles describe innovative informatics research and systems that help to advance biomedical science and to promote health. Case reports, perspectives and reviews also help readers stay connected with the most important informatics developments in implementation, policy and education.