Hopping kinetic differences in masters runners with and without Achilles tendinopathy.

IF 2 3区 医学 Q3 ENGINEERING, BIOMEDICAL Sports Biomechanics Pub Date : 2025-01-16 DOI:10.1080/14763141.2025.2451689
Matthew Klein, Chris Patterson, Annette Karim, Tyler Cuddeford
{"title":"Hopping kinetic differences in masters runners with and without Achilles tendinopathy.","authors":"Matthew Klein, Chris Patterson, Annette Karim, Tyler Cuddeford","doi":"10.1080/14763141.2025.2451689","DOIUrl":null,"url":null,"abstract":"<p><p>Achilles tendinopathy (AT) is the most common running-related pathology among masters runners. Previous evidence suggests there are no differences in submaximal running biomechanics between masters runners with and without AT. Evidence suggests lower extremity power deficits are common among ageing individuals and those with AT. The single-leg horizontal hop (SLHH) test is a valid and reliable lower extremity power test. The purpose of this study was to investigate differences in SLHH biomechanics between masters runners with and without AT. 32 masters runners age 50 and older with AT (60.31 ± 8.37, <i>n</i> = 16) and without (59.94 ± 4.95 <i>n</i> = 16) were included. 3D motion capture and force plates were used to assess hopping biomechanics. Masters runners with AT had significantly lower peak ankle plantarflexion positive power peak hip extensor positive power and peak hip extension moments compared to healthy controls. No differences in peak ankle plantarflexion moments and knee kinetics were observed between groups. Masters runners with AT demonstrate altered lower extremity biomechanics during the propulsive phase of the SLHH, suggesting they may not be able to appropriately generate forces and release stored energy from the Achilles tendon during maximal efforts.</p>","PeriodicalId":49482,"journal":{"name":"Sports Biomechanics","volume":" ","pages":"1-11"},"PeriodicalIF":2.0000,"publicationDate":"2025-01-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sports Biomechanics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1080/14763141.2025.2451689","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Achilles tendinopathy (AT) is the most common running-related pathology among masters runners. Previous evidence suggests there are no differences in submaximal running biomechanics between masters runners with and without AT. Evidence suggests lower extremity power deficits are common among ageing individuals and those with AT. The single-leg horizontal hop (SLHH) test is a valid and reliable lower extremity power test. The purpose of this study was to investigate differences in SLHH biomechanics between masters runners with and without AT. 32 masters runners age 50 and older with AT (60.31 ± 8.37, n = 16) and without (59.94 ± 4.95 n = 16) were included. 3D motion capture and force plates were used to assess hopping biomechanics. Masters runners with AT had significantly lower peak ankle plantarflexion positive power peak hip extensor positive power and peak hip extension moments compared to healthy controls. No differences in peak ankle plantarflexion moments and knee kinetics were observed between groups. Masters runners with AT demonstrate altered lower extremity biomechanics during the propulsive phase of the SLHH, suggesting they may not be able to appropriately generate forces and release stored energy from the Achilles tendon during maximal efforts.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
有跟腱病和无跟腱病的跑步大师的跳跃动力学差异。
跟腱病(AT)是跑步大师中最常见的与跑步相关的病理。先前的证据表明,在有和没有AT的大师跑者之间,亚极限跑的生物力学没有差异。有证据表明,下肢力量不足在老年人和AT患者中很常见。单腿水平跳跃(SLHH)试验是一种有效、可靠的下肢力量试验。本研究的目的是研究有和没有AT的跑步大师在SLHH生物力学方面的差异。纳入32名50岁及以上的跑步大师,分别患有AT(60.31±8.37,n = 16)和无AT(59.94±4.95,n = 16)。使用三维运动捕捉和力板评估跳跃生物力学。与健康对照组相比,AT大师跑步者的踝关节跖屈峰值正能量、髋关节伸肌峰值正能量和髋关节伸肌峰值力矩显著降低。各组之间踝关节跖屈峰值力矩和膝关节动力学均无差异。有AT的跑步大师在SLHH的推进阶段表现出下肢生物力学的改变,这表明他们可能无法在最大努力时适当地从跟腱产生力量和释放储存的能量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Sports Biomechanics
Sports Biomechanics 医学-工程:生物医学
CiteScore
5.70
自引率
9.10%
发文量
135
审稿时长
>12 weeks
期刊介绍: Sports Biomechanics is the Thomson Reuters listed scientific journal of the International Society of Biomechanics in Sports (ISBS). The journal sets out to generate knowledge to improve human performance and reduce the incidence of injury, and to communicate this knowledge to scientists, coaches, clinicians, teachers, and participants. The target performance realms include not only the conventional areas of sports and exercise, but also fundamental motor skills and other highly specialized human movements such as dance (both sport and artistic). Sports Biomechanics is unique in its emphasis on a broad biomechanical spectrum of human performance including, but not limited to, technique, skill acquisition, training, strength and conditioning, exercise, coaching, teaching, equipment, modeling and simulation, measurement, and injury prevention and rehabilitation. As well as maintaining scientific rigour, there is a strong editorial emphasis on ''reader friendliness''. By emphasising the practical implications and applications of research, the journal seeks to benefit practitioners directly. Sports Biomechanics publishes papers in four sections: Original Research, Reviews, Teaching, and Methods and Theoretical Perspectives.
期刊最新文献
Measuring pole forces in seated shot put: a case study. Markerless motion capture in sport: panacea or Pandora's box? Association between T2 relaxation time and biomechanical loading of the anterior cruciate ligament in healthy individuals. A comparison of maximal isometric force in the first pull, transition and second pull of the clean and their contribution to predict performance in national and international level weightlifters. Angular motion of the thorax during the golf swing: a comparison of two orientation angle sequences.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1