Automatic skeletal maturity grading from pelvis radiographs by deep learning for adolescent idiopathic scoliosis.

IF 2.6 4区 医学 Q2 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS Medical & Biological Engineering & Computing Pub Date : 2025-01-22 DOI:10.1007/s11517-025-03283-4
Yang Zhao, Junhua Zhang, Hongjian Li, Qiyang Wang, Yungui Li, Zetong Wang
{"title":"Automatic skeletal maturity grading from pelvis radiographs by deep learning for adolescent idiopathic scoliosis.","authors":"Yang Zhao, Junhua Zhang, Hongjian Li, Qiyang Wang, Yungui Li, Zetong Wang","doi":"10.1007/s11517-025-03283-4","DOIUrl":null,"url":null,"abstract":"<p><p>Adolescent idiopathic scoliosis (AIS) is a three-dimensional spine deformity governed of the spine. A child's Risser stage of skeletal maturity must be carefully considered for AIS evaluation and treatment. However, there are intra-observer and inter-observer inaccuracies in the Risser stage manual assessment. A multi-task learning approach is proposed to address the low precision issue of manual assessment. With our developed multi-task learning approach, the iliac area is extracted and forwarded to the improved Swin Transformer for Risser stage assessment. The spatial and channel reconstruction convolutional Swin block is adapted to each stage of the Swin Transformer to achieve better performance. The Risser stage assessment based on iliac region extraction had an overall accuracy of 81.53%. The accuracy increased in comparison to ResNet50, ResNet101, Uni-former, Next-ViT, ConvNeXt, and the original Swin Transformer by 5.85%, 4.6%, 3.6%, 2.7%, 2.25%, and 1.8%, respectively. The Grad-CAM visualization is used to understand the interpretability of our proposed model. The results show that the proposed multi-task learning strategy performs well on the Risser stage assessment. Our proposed automatic Risser stage assessment method benefits the clinical evaluation of AIS. Project address: https://github.com/xyz911015/Risser-stage-assessment.</p>","PeriodicalId":49840,"journal":{"name":"Medical & Biological Engineering & Computing","volume":" ","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2025-01-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Medical & Biological Engineering & Computing","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s11517-025-03283-4","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

Adolescent idiopathic scoliosis (AIS) is a three-dimensional spine deformity governed of the spine. A child's Risser stage of skeletal maturity must be carefully considered for AIS evaluation and treatment. However, there are intra-observer and inter-observer inaccuracies in the Risser stage manual assessment. A multi-task learning approach is proposed to address the low precision issue of manual assessment. With our developed multi-task learning approach, the iliac area is extracted and forwarded to the improved Swin Transformer for Risser stage assessment. The spatial and channel reconstruction convolutional Swin block is adapted to each stage of the Swin Transformer to achieve better performance. The Risser stage assessment based on iliac region extraction had an overall accuracy of 81.53%. The accuracy increased in comparison to ResNet50, ResNet101, Uni-former, Next-ViT, ConvNeXt, and the original Swin Transformer by 5.85%, 4.6%, 3.6%, 2.7%, 2.25%, and 1.8%, respectively. The Grad-CAM visualization is used to understand the interpretability of our proposed model. The results show that the proposed multi-task learning strategy performs well on the Risser stage assessment. Our proposed automatic Risser stage assessment method benefits the clinical evaluation of AIS. Project address: https://github.com/xyz911015/Risser-stage-assessment.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
通过深度学习对青少年特发性脊柱侧凸骨盆x线片进行骨骼成熟度自动分级。
青少年特发性脊柱侧凸(AIS)是脊柱控制的三维脊柱畸形。儿童的骨骼成熟期必须仔细考虑AIS的评估和治疗。然而,在Risser阶段人工评估中存在观察者内部和观察者之间的不准确性。针对人工评估精度低的问题,提出了一种多任务学习方法。使用我们开发的多任务学习方法,髂区域被提取并转发到改进的Swin变压器进行Risser阶段评估。在Swin变压器的每一级都采用了空间和信道重构卷积Swin块,以获得更好的性能。基于髂区提取的Risser分期评估总体准确率为81.53%。与ResNet50、ResNet101、Uni-former、Next-ViT、ConvNeXt和原始Swin Transformer相比,准确度分别提高了5.85%、4.6%、3.6%、2.7%、2.25%和1.8%。使用Grad-CAM可视化来理解我们提出的模型的可解释性。结果表明,所提出的多任务学习策略在Risser阶段评估中表现良好。我们提出的自动Risser分期评估方法有利于AIS的临床评估。项目地址:https://github.com/xyz911015/Risser-stage-assessment。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Medical & Biological Engineering & Computing
Medical & Biological Engineering & Computing 医学-工程:生物医学
CiteScore
6.00
自引率
3.10%
发文量
249
审稿时长
3.5 months
期刊介绍: Founded in 1963, Medical & Biological Engineering & Computing (MBEC) continues to serve the biomedical engineering community, covering the entire spectrum of biomedical and clinical engineering. The journal presents exciting and vital experimental and theoretical developments in biomedical science and technology, and reports on advances in computer-based methodologies in these multidisciplinary subjects. The journal also incorporates new and evolving technologies including cellular engineering and molecular imaging. MBEC publishes original research articles as well as reviews and technical notes. Its Rapid Communications category focuses on material of immediate value to the readership, while the Controversies section provides a forum to exchange views on selected issues, stimulating a vigorous and informed debate in this exciting and high profile field. MBEC is an official journal of the International Federation of Medical and Biological Engineering (IFMBE).
期刊最新文献
LGENet: disentangle anatomy and pathology features for late gadolinium enhancement image segmentation. Deep learning for retinal vessel segmentation: a systematic review of techniques and applications. TongueTransUNet: toward effective tongue contour segmentation using well-managed dataset. Drug repositioning based on mutual information for the treatment of Alzheimer's disease patients. InspirationOnly: synthesizing expiratory CT from inspiratory CT to estimate parametric response map.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1