{"title":"Non-Stationarity in Time-Series Analysis: Modeling Stochastic and Deterministic Trends.","authors":"Oisín Ryan, Jonas M B Haslbeck, Lourens J Waldorp","doi":"10.1080/00273171.2024.2436413","DOIUrl":null,"url":null,"abstract":"<p><p>Time series analysis is increasingly popular across scientific domains. A key concept in time series analysis is stationarity, the stability of statistical properties of a time series. Understanding stationarity is crucial to addressing frequent issues in time series analysis such as the consequences of failing to model non-stationarity, how to determine the mechanisms generating non-stationarity, and consequently how to model those mechanisms (i.e., by differencing or detrending). However, many empirical researchers have a limited understanding of stationarity, which can lead to the use of incorrect research practices and misleading substantive conclusions. In this paper, we address this problem by answering these questions in an accessible way. To this end, we study how researchers can use detrending and differencing to model trends in time series analysis. We show <i>via</i> simulation the consequences of modeling trends inappropriately, and evaluate the performance of one popular approach to distinguish different trend types in empirical data. We present these results in an accessible way, providing an extensive introduction to key concepts in time series analysis, illustrated throughout with simple examples. Finally, we discuss a number of take-home messages and extensions to standard approaches, which directly address more complex time-series analysis problems encountered by empirical researchers.</p>","PeriodicalId":53155,"journal":{"name":"Multivariate Behavioral Research","volume":" ","pages":"1-33"},"PeriodicalIF":5.3000,"publicationDate":"2025-01-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Multivariate Behavioral Research","FirstCategoryId":"102","ListUrlMain":"https://doi.org/10.1080/00273171.2024.2436413","RegionNum":3,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0
Abstract
Time series analysis is increasingly popular across scientific domains. A key concept in time series analysis is stationarity, the stability of statistical properties of a time series. Understanding stationarity is crucial to addressing frequent issues in time series analysis such as the consequences of failing to model non-stationarity, how to determine the mechanisms generating non-stationarity, and consequently how to model those mechanisms (i.e., by differencing or detrending). However, many empirical researchers have a limited understanding of stationarity, which can lead to the use of incorrect research practices and misleading substantive conclusions. In this paper, we address this problem by answering these questions in an accessible way. To this end, we study how researchers can use detrending and differencing to model trends in time series analysis. We show via simulation the consequences of modeling trends inappropriately, and evaluate the performance of one popular approach to distinguish different trend types in empirical data. We present these results in an accessible way, providing an extensive introduction to key concepts in time series analysis, illustrated throughout with simple examples. Finally, we discuss a number of take-home messages and extensions to standard approaches, which directly address more complex time-series analysis problems encountered by empirical researchers.
期刊介绍:
Multivariate Behavioral Research (MBR) publishes a variety of substantive, methodological, and theoretical articles in all areas of the social and behavioral sciences. Most MBR articles fall into one of two categories. Substantive articles report on applications of sophisticated multivariate research methods to study topics of substantive interest in personality, health, intelligence, industrial/organizational, and other behavioral science areas. Methodological articles present and/or evaluate new developments in multivariate methods, or address methodological issues in current research. We also encourage submission of integrative articles related to pedagogy involving multivariate research methods, and to historical treatments of interest and relevance to multivariate research methods.