Non-Stationarity in Time-Series Analysis: Modeling Stochastic and Deterministic Trends.

IF 5.3 3区 心理学 Q1 MATHEMATICS, INTERDISCIPLINARY APPLICATIONS Multivariate Behavioral Research Pub Date : 2025-01-15 DOI:10.1080/00273171.2024.2436413
Oisín Ryan, Jonas M B Haslbeck, Lourens J Waldorp
{"title":"Non-Stationarity in Time-Series Analysis: Modeling Stochastic and Deterministic Trends.","authors":"Oisín Ryan, Jonas M B Haslbeck, Lourens J Waldorp","doi":"10.1080/00273171.2024.2436413","DOIUrl":null,"url":null,"abstract":"<p><p>Time series analysis is increasingly popular across scientific domains. A key concept in time series analysis is stationarity, the stability of statistical properties of a time series. Understanding stationarity is crucial to addressing frequent issues in time series analysis such as the consequences of failing to model non-stationarity, how to determine the mechanisms generating non-stationarity, and consequently how to model those mechanisms (i.e., by differencing or detrending). However, many empirical researchers have a limited understanding of stationarity, which can lead to the use of incorrect research practices and misleading substantive conclusions. In this paper, we address this problem by answering these questions in an accessible way. To this end, we study how researchers can use detrending and differencing to model trends in time series analysis. We show <i>via</i> simulation the consequences of modeling trends inappropriately, and evaluate the performance of one popular approach to distinguish different trend types in empirical data. We present these results in an accessible way, providing an extensive introduction to key concepts in time series analysis, illustrated throughout with simple examples. Finally, we discuss a number of take-home messages and extensions to standard approaches, which directly address more complex time-series analysis problems encountered by empirical researchers.</p>","PeriodicalId":53155,"journal":{"name":"Multivariate Behavioral Research","volume":" ","pages":"1-33"},"PeriodicalIF":5.3000,"publicationDate":"2025-01-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Multivariate Behavioral Research","FirstCategoryId":"102","ListUrlMain":"https://doi.org/10.1080/00273171.2024.2436413","RegionNum":3,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

Time series analysis is increasingly popular across scientific domains. A key concept in time series analysis is stationarity, the stability of statistical properties of a time series. Understanding stationarity is crucial to addressing frequent issues in time series analysis such as the consequences of failing to model non-stationarity, how to determine the mechanisms generating non-stationarity, and consequently how to model those mechanisms (i.e., by differencing or detrending). However, many empirical researchers have a limited understanding of stationarity, which can lead to the use of incorrect research practices and misleading substantive conclusions. In this paper, we address this problem by answering these questions in an accessible way. To this end, we study how researchers can use detrending and differencing to model trends in time series analysis. We show via simulation the consequences of modeling trends inappropriately, and evaluate the performance of one popular approach to distinguish different trend types in empirical data. We present these results in an accessible way, providing an extensive introduction to key concepts in time series analysis, illustrated throughout with simple examples. Finally, we discuss a number of take-home messages and extensions to standard approaches, which directly address more complex time-series analysis problems encountered by empirical researchers.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
时间序列分析中的非平稳性:随机和确定性趋势建模。
时间序列分析在科学领域越来越受欢迎。时间序列分析中的一个关键概念是平稳性,即时间序列统计性质的稳定性。理解平稳性对于解决时间序列分析中经常出现的问题至关重要,例如未能对非平稳性进行建模的后果,如何确定产生非平稳性的机制,以及如何对这些机制进行建模(即,通过差异或去趋势)。然而,许多实证研究人员对平稳性的理解有限,这可能导致使用不正确的研究实践和误导性的实质性结论。在本文中,我们通过以一种易于理解的方式回答这些问题来解决这个问题。为此,我们研究了研究人员如何在时间序列分析中使用趋势性和差异性来建模趋势。我们通过模拟展示了对趋势建模不当的后果,并评估了在经验数据中区分不同趋势类型的一种流行方法的性能。我们以一种易于理解的方式呈现这些结果,对时间序列分析中的关键概念进行了广泛的介绍,并通过简单的示例进行了说明。最后,我们讨论了一些关键信息和标准方法的扩展,这些方法直接解决了实证研究人员遇到的更复杂的时间序列分析问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Multivariate Behavioral Research
Multivariate Behavioral Research 数学-数学跨学科应用
CiteScore
7.60
自引率
2.60%
发文量
49
审稿时长
>12 weeks
期刊介绍: Multivariate Behavioral Research (MBR) publishes a variety of substantive, methodological, and theoretical articles in all areas of the social and behavioral sciences. Most MBR articles fall into one of two categories. Substantive articles report on applications of sophisticated multivariate research methods to study topics of substantive interest in personality, health, intelligence, industrial/organizational, and other behavioral science areas. Methodological articles present and/or evaluate new developments in multivariate methods, or address methodological issues in current research. We also encourage submission of integrative articles related to pedagogy involving multivariate research methods, and to historical treatments of interest and relevance to multivariate research methods.
期刊最新文献
Interrater Reliability for Interdependent Social Network Data: A Generalizability Theory Approach. Estimated Factor Scores Are Not True Factor Scores. Nodewise Parameter Aggregation for Psychometric Networks. Evidence That Growth Mixture Model Results Are Highly Sensitive to Scoring Decisions. Non-Stationarity in Time-Series Analysis: Modeling Stochastic and Deterministic Trends.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1