Felicitas Oehler, Robert Hagen, Klaus Hackländer, Zea Walton, Kumar Ashish, Janosch Arnold
{"title":"How do red foxes (Vulpes vulpes) explore their environment? Characteristics of movement patterns in time and space.","authors":"Felicitas Oehler, Robert Hagen, Klaus Hackländer, Zea Walton, Kumar Ashish, Janosch Arnold","doi":"10.1186/s40462-024-00526-1","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Many animals must adapt their movements to different conditions encountered during different life phases, such as when exploring extraterritorial areas for dispersal, foraging or breeding. To better understand how animals move in different movement phases, we asked whether movement patterns differ between one way directed movements, such as during the transient phase of dispersal or two way exploratory-like movements such as during extraterritorial excursions or stationary movements.</p><p><strong>Methods: </strong>We GPS collared red foxes in a rural area in southern Germany between 2020 and 2023. Using a random forest model, we analyzed different movement parameters, habitat features-for example landclasses and distances to linear structures-and time variables (season and time of day) within red fox exploratory, transient and stationary movement phases to characterize phase specific movement patterns and to investigate the influence of different variables on classifying the movement phases.</p><p><strong>Results: </strong>According to the classification model, the movement patterns in the different phases were characterized most strongly by the variables persistence velocity, season, step length and distance to linear structures. In extraterritorial areas, red foxes either moved straight with high persistence velocity, close to anthropogenic linear structures during transient movements, or more tortuously containing a higher variance in turning angles and a decrease in persistence velocity during exploratory-like movements. Transient movements mainly took place during autumn, whereas exploratory-like movements were mainly conducted during winter and spring.</p><p><strong>Conclusion: </strong>Movement patterns of red foxes differ between transient, exploratory and stationary phases, reflecting displacement, searching and resident movement strategies. Our results signify the importance of the combined effect of using movement, habitat and time variables together in analyzing movement phases. High movement variability may allow red foxes to navigate in extraterritorial areas efficiently and to adapt to different environmental and behavioral conditions.</p>","PeriodicalId":54288,"journal":{"name":"Movement Ecology","volume":"13 1","pages":"4"},"PeriodicalIF":3.4000,"publicationDate":"2025-01-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11737238/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Movement Ecology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1186/s40462-024-00526-1","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ECOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Background: Many animals must adapt their movements to different conditions encountered during different life phases, such as when exploring extraterritorial areas for dispersal, foraging or breeding. To better understand how animals move in different movement phases, we asked whether movement patterns differ between one way directed movements, such as during the transient phase of dispersal or two way exploratory-like movements such as during extraterritorial excursions or stationary movements.
Methods: We GPS collared red foxes in a rural area in southern Germany between 2020 and 2023. Using a random forest model, we analyzed different movement parameters, habitat features-for example landclasses and distances to linear structures-and time variables (season and time of day) within red fox exploratory, transient and stationary movement phases to characterize phase specific movement patterns and to investigate the influence of different variables on classifying the movement phases.
Results: According to the classification model, the movement patterns in the different phases were characterized most strongly by the variables persistence velocity, season, step length and distance to linear structures. In extraterritorial areas, red foxes either moved straight with high persistence velocity, close to anthropogenic linear structures during transient movements, or more tortuously containing a higher variance in turning angles and a decrease in persistence velocity during exploratory-like movements. Transient movements mainly took place during autumn, whereas exploratory-like movements were mainly conducted during winter and spring.
Conclusion: Movement patterns of red foxes differ between transient, exploratory and stationary phases, reflecting displacement, searching and resident movement strategies. Our results signify the importance of the combined effect of using movement, habitat and time variables together in analyzing movement phases. High movement variability may allow red foxes to navigate in extraterritorial areas efficiently and to adapt to different environmental and behavioral conditions.
Movement EcologyAgricultural and Biological Sciences-Ecology, Evolution, Behavior and Systematics
CiteScore
6.60
自引率
4.90%
发文量
47
审稿时长
23 weeks
期刊介绍:
Movement Ecology is an open-access interdisciplinary journal publishing novel insights from empirical and theoretical approaches into the ecology of movement of the whole organism - either animals, plants or microorganisms - as the central theme. We welcome manuscripts on any taxa and any movement phenomena (e.g. foraging, dispersal and seasonal migration) addressing important research questions on the patterns, mechanisms, causes and consequences of organismal movement. Manuscripts will be rigorously peer-reviewed to ensure novelty and high quality.