Efficient optimisation of physical reservoir computers using only a delayed input.

Enrico Picco, Lina Jaurigue, Kathy Lüdge, Serge Massar
{"title":"Efficient optimisation of physical reservoir computers using only a delayed input.","authors":"Enrico Picco, Lina Jaurigue, Kathy Lüdge, Serge Massar","doi":"10.1038/s44172-025-00340-6","DOIUrl":null,"url":null,"abstract":"<p><p>Reservoir computing is a machine learning algorithm for processing time dependent data which is well suited for experimental implementation. Tuning the hyperparameters of the reservoir is a time-consuming task that limits is applicability. Here we present an experimental validation of a recently proposed optimisation technique in which the reservoir receives both the input signal and a delayed version of the input signal. This augments the memory of the reservoir and improves its performance. It also simplifies the time-consuming task of hyperparameter tuning. The experimental system is an optoelectronic setup based on a fiber delay loop and a single nonlinear node. It is tested on several benchmark tasks and reservoir operating conditions. Our results demonstrate the effectiveness of the delayed input method for experimental implementation of reservoir computing systems.</p>","PeriodicalId":72644,"journal":{"name":"Communications engineering","volume":"4 1","pages":"3"},"PeriodicalIF":0.0000,"publicationDate":"2025-01-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11742992/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1038/s44172-025-00340-6","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Reservoir computing is a machine learning algorithm for processing time dependent data which is well suited for experimental implementation. Tuning the hyperparameters of the reservoir is a time-consuming task that limits is applicability. Here we present an experimental validation of a recently proposed optimisation technique in which the reservoir receives both the input signal and a delayed version of the input signal. This augments the memory of the reservoir and improves its performance. It also simplifies the time-consuming task of hyperparameter tuning. The experimental system is an optoelectronic setup based on a fiber delay loop and a single nonlinear node. It is tested on several benchmark tasks and reservoir operating conditions. Our results demonstrate the effectiveness of the delayed input method for experimental implementation of reservoir computing systems.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
仅使用延迟输入的物理储层计算机的有效优化。
储层计算是一种处理时间相关数据的机器学习算法,非常适合于实验实现。调整储层的超参数是一项耗时的任务,限制了其适用性。在这里,我们提出了最近提出的优化技术的实验验证,其中水库接收输入信号和输入信号的延迟版本。这增加了储层的记忆并改善了其性能。它还简化了耗时的超参数调优任务。该实验系统是基于光纤延迟环路和单非线性节点的光电装置。它在几个基准任务和油藏操作条件下进行了测试。我们的结果证明了延迟输入方法在油藏计算系统实验实现中的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Three-dimensional runout characterisation for rotationally symmetric components. Low-power Spiking Neural Network audio source localisation using a Hilbert Transform audio event encoding scheme. A multipath error cancellation method based on antenna jitter. Periodic cooking of eggs. Acoustic impedance-based surface acoustic wave chip for gas leak detection and respiratory monitoring.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1