In Vitro Formation of Actin Ring in the Fission Yeast Cell Extracts.

Shogo Yoshihara, Takao Nakata, Jun Kashiwazaki, Kazuhiro Aoyama, Issei Mabuchi
{"title":"In Vitro Formation of Actin Ring in the Fission Yeast Cell Extracts.","authors":"Shogo Yoshihara, Takao Nakata, Jun Kashiwazaki, Kazuhiro Aoyama, Issei Mabuchi","doi":"10.1002/cm.21997","DOIUrl":null,"url":null,"abstract":"<p><p>Cytokinesis in animal and fungal cells requires the contraction of actomyosin-based contractile rings formed in the division cortex of the cell during late mitosis. However, the detailed mechanism remains incompletely understood. Here, we aim to develop a novel cell-free system by encapsulating cell extracts obtained from fission yeast cells within lipid vesicles, which subsequently leads to the formation of a contractile ring-like structure inside the vesicles. Using this system, we found that an actin ring structure formed in vesicles of a size similar to that of fission yeast cells, with the frequency of ring appearance increasing in the presence of PI(4,5)P<sub>2</sub> (PIP<sub>2</sub>). In contrast, larger vesicles tended to form actin bundles, which were sometimes associated with ring structures or network-like structures. The effects of various inhibitors affecting cytoskeleton formation were investigated, revealing that actin polymerization was essential for the formation of these actin structures. Additionally, the involvement of ATP, the Schizosaccharomyces pombe PLK \"Plo1,\" and the small GTPase Rho was suggested to play a crucial role in this process. Examination of mitotic extracts revealed the formation of actin dot structures in phosphatidylethanolamine vesicles. However, most of these structures disappeared in the presence of PIP<sub>2</sub>, leading to the formation of actin Rings instead. Using extracts from cells expressing α-actinin Ain1 or myosin-II light chain Rlc1, both fused with fluorescent proteins, we found that these proteins colocalized with actin bundles. In summary, we have developed a new semi-in vitro system to investigate mechanisms such as cell division and cytoskeleton formation.</p>","PeriodicalId":72766,"journal":{"name":"Cytoskeleton (Hoboken, N.J.)","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-01-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cytoskeleton (Hoboken, N.J.)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/cm.21997","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Cytokinesis in animal and fungal cells requires the contraction of actomyosin-based contractile rings formed in the division cortex of the cell during late mitosis. However, the detailed mechanism remains incompletely understood. Here, we aim to develop a novel cell-free system by encapsulating cell extracts obtained from fission yeast cells within lipid vesicles, which subsequently leads to the formation of a contractile ring-like structure inside the vesicles. Using this system, we found that an actin ring structure formed in vesicles of a size similar to that of fission yeast cells, with the frequency of ring appearance increasing in the presence of PI(4,5)P2 (PIP2). In contrast, larger vesicles tended to form actin bundles, which were sometimes associated with ring structures or network-like structures. The effects of various inhibitors affecting cytoskeleton formation were investigated, revealing that actin polymerization was essential for the formation of these actin structures. Additionally, the involvement of ATP, the Schizosaccharomyces pombe PLK "Plo1," and the small GTPase Rho was suggested to play a crucial role in this process. Examination of mitotic extracts revealed the formation of actin dot structures in phosphatidylethanolamine vesicles. However, most of these structures disappeared in the presence of PIP2, leading to the formation of actin Rings instead. Using extracts from cells expressing α-actinin Ain1 or myosin-II light chain Rlc1, both fused with fluorescent proteins, we found that these proteins colocalized with actin bundles. In summary, we have developed a new semi-in vitro system to investigate mechanisms such as cell division and cytoskeleton formation.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
裂变酵母细胞提取物中肌动蛋白环的体外形成。
动物和真菌细胞的细胞质分裂需要有丝分裂后期在细胞分裂皮层形成的基于肌动球蛋白的收缩环的收缩。然而,详细的机制仍不完全清楚。在这里,我们的目标是开发一种新的无细胞系统,通过将从裂变酵母细胞中获得的细胞提取物包封在脂质囊泡中,随后导致囊泡内形成可收缩的环状结构。使用该系统,我们发现肌动蛋白环状结构在囊泡中形成,其大小与裂变酵母细胞相似,并且在PI(4,5)P2 (PIP2)存在时,环状出现的频率增加。相反,较大的囊泡倾向于形成肌动蛋白束,这些肌动蛋白束有时与环状结构或网状结构有关。研究了各种抑制剂对细胞骨架形成的影响,揭示了肌动蛋白聚合对这些肌动蛋白结构的形成至关重要。此外,ATP、Schizosaccharomyces pombe PLK“Plo1”和小GTPase Rho的参与被认为在这一过程中起着至关重要的作用。对有丝分裂提取物的检查显示在磷脂酰乙醇胺囊泡中形成肌动蛋白点结构。然而,大多数这些结构在PIP2存在下消失,导致肌动蛋白环的形成。利用表达α-肌动蛋白Ain1或肌球蛋白ii轻链Rlc1的细胞提取物,我们发现这些蛋白与肌动蛋白束共定位。总之,我们已经开发了一种新的半体外系统来研究细胞分裂和细胞骨架形成等机制。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Cytoskeleton Spotlight: Yuan Ren, PhD. Actin Cytoskeleton at the Synapse: An Alzheimer's Disease Perspective. In Situ Mechanics of the Cytoskeleton. In Vitro Formation of Actin Ring in the Fission Yeast Cell Extracts. An Interview With Dan Mulvihill, School of Biosciences, University of Kent, UK.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1