Active learning driven prioritisation of compounds from on-demand libraries targeting the SARS-CoV-2 main protease.

IF 6.2 Q1 CHEMISTRY, MULTIDISCIPLINARY Digital discovery Pub Date : 2025-01-08 DOI:10.1039/d4dd00343h
Ben Cree, Mateusz K Bieniek, Siddique Amin, Akane Kawamura, Daniel J Cole
{"title":"Active learning driven prioritisation of compounds from on-demand libraries targeting the SARS-CoV-2 main protease.","authors":"Ben Cree, Mateusz K Bieniek, Siddique Amin, Akane Kawamura, Daniel J Cole","doi":"10.1039/d4dd00343h","DOIUrl":null,"url":null,"abstract":"<p><p>FEgrow is an open-source software package for building congeneric series of compounds in protein binding pockets. For a given ligand core and receptor structure, it employs hybrid machine learning/molecular mechanics potential energy functions to optimise the bioactive conformers of supplied linkers and functional groups. Here, we introduce significant new functionality to automate, parallelise and accelerate the building and scoring of compound suggestions, such that it can be used for automated <i>de novo</i> design. We interface the workflow with active learning to improve the efficiency of searching the combinatorial space of possible linkers and functional groups, make use of interactions formed by crystallographic fragments in scoring compound designs, and introduce the option to seed the chemical space with molecules available from on-demand chemical libraries. As a test case, we target the main protease (Mpro) of SARS-CoV-2, identifying several small molecules with high similarity to molecules discovered by the COVID moonshot effort, using only structural information from a fragment screen in a fully automated fashion. Finally, we order and test 19 compound designs, of which three show weak activity in a fluorescence-based Mpro assay, but work is needed to further optimise the prioritisation of compounds for purchase. The FEgrow package and full tutorials demonstrating the active learning workflow are available at https://github.com/cole-group/FEgrow.</p>","PeriodicalId":72816,"journal":{"name":"Digital discovery","volume":" ","pages":""},"PeriodicalIF":6.2000,"publicationDate":"2025-01-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11726688/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Digital discovery","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1039/d4dd00343h","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

FEgrow is an open-source software package for building congeneric series of compounds in protein binding pockets. For a given ligand core and receptor structure, it employs hybrid machine learning/molecular mechanics potential energy functions to optimise the bioactive conformers of supplied linkers and functional groups. Here, we introduce significant new functionality to automate, parallelise and accelerate the building and scoring of compound suggestions, such that it can be used for automated de novo design. We interface the workflow with active learning to improve the efficiency of searching the combinatorial space of possible linkers and functional groups, make use of interactions formed by crystallographic fragments in scoring compound designs, and introduce the option to seed the chemical space with molecules available from on-demand chemical libraries. As a test case, we target the main protease (Mpro) of SARS-CoV-2, identifying several small molecules with high similarity to molecules discovered by the COVID moonshot effort, using only structural information from a fragment screen in a fully automated fashion. Finally, we order and test 19 compound designs, of which three show weak activity in a fluorescence-based Mpro assay, but work is needed to further optimise the prioritisation of compounds for purchase. The FEgrow package and full tutorials demonstrating the active learning workflow are available at https://github.com/cole-group/FEgrow.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
主动学习驱动了针对SARS-CoV-2主要蛋白酶的按需文库中化合物的优先顺序。
FEgrow是一个开源软件包,用于在蛋白质结合口袋中构建同源系列化合物。对于给定的配体核和受体结构,它采用混合机器学习/分子力学势能函数来优化所提供的连接体和官能团的生物活性构象。在这里,我们引入了重要的新功能来自动化、并行化和加速复合建议的构建和评分,这样它就可以用于自动化的从头设计。我们将工作流程与主动学习相结合,以提高搜索可能的连接体和官能团组合空间的效率,利用晶体碎片形成的相互作用来评分化合物设计,并引入从按需化学文库中获得分子的化学空间种子选项。作为一个测试案例,我们以SARS-CoV-2的主要蛋白酶(Mpro)为目标,识别出几个与COVID登月计划中发现的分子高度相似的小分子,仅使用片段筛选的结构信息,以全自动的方式进行。最后,我们订购并测试了19种化合物设计,其中3种在基于荧光的Mpro分析中表现出较弱的活性,但需要进一步优化化合物购买的优先级。FEgrow包和演示主动学习工作流的完整教程可在https://github.com/cole-group/FEgrow上获得。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
2.80
自引率
0.00%
发文量
0
期刊最新文献
Biophysics-guided uncertainty-aware deep learning uncovers high-affinity plastic-binding peptides. Back cover Predicting hydrogen atom transfer energy barriers using Gaussian process regression. Active learning driven prioritisation of compounds from on-demand libraries targeting the SARS-CoV-2 main protease. ULaMDyn: enhancing excited-state dynamics analysis through streamlined unsupervised learning.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1