Significant oligodendrocyte progenitor and microglial cell death is a feature of remyelination following toxin-induced experimental demyelination.

IF 4.1 Q1 CLINICAL NEUROLOGY Brain communications Pub Date : 2025-01-17 eCollection Date: 2025-01-01 DOI:10.1093/braincomms/fcae386
Hallie Gaitsch, Peggy Assinck, Penelope Dimas, Chao Zhao, Laura Morcom, David H Rowitch, Daniel S Reich, Robin J M Franklin
{"title":"Significant oligodendrocyte progenitor and microglial cell death is a feature of remyelination following toxin-induced experimental demyelination.","authors":"Hallie Gaitsch, Peggy Assinck, Penelope Dimas, Chao Zhao, Laura Morcom, David H Rowitch, Daniel S Reich, Robin J M Franklin","doi":"10.1093/braincomms/fcae386","DOIUrl":null,"url":null,"abstract":"<p><p>The extent to which glial cell turnover features in successful remyelination is unclear. In this study, the rat caudal cerebellar peduncle-ethidium bromide lesion model was used to profile oligodendroglial and microglial/macrophage cell death and proliferation dynamics over the course of repair. Lesioned and control tissue was co-labelled with antibody markers for cell identity, proliferation, and apoptosis (TUNEL assay), then imaged at full thickness using confocal microscopy and quantified using custom CellProfiler pipelines. Early remyelination time points were marked by an increased density of total proliferating cells, including oligodendrocyte progenitor cells. Late remyelination time points featured increased TUNEL+ oligodendrocyte progenitor cells: however, most TUNEL+ cells within remyelinating lesions were Iba1+ microglia/macrophages. These results indicate that repairing lesions are characterized by a high degree of glial cell death and suggest that monitoring cell death-related by-products might have clinical value in the setting of remyelination.</p>","PeriodicalId":93915,"journal":{"name":"Brain communications","volume":"7 1","pages":"fcae386"},"PeriodicalIF":4.1000,"publicationDate":"2025-01-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11739797/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Brain communications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/braincomms/fcae386","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"CLINICAL NEUROLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

The extent to which glial cell turnover features in successful remyelination is unclear. In this study, the rat caudal cerebellar peduncle-ethidium bromide lesion model was used to profile oligodendroglial and microglial/macrophage cell death and proliferation dynamics over the course of repair. Lesioned and control tissue was co-labelled with antibody markers for cell identity, proliferation, and apoptosis (TUNEL assay), then imaged at full thickness using confocal microscopy and quantified using custom CellProfiler pipelines. Early remyelination time points were marked by an increased density of total proliferating cells, including oligodendrocyte progenitor cells. Late remyelination time points featured increased TUNEL+ oligodendrocyte progenitor cells: however, most TUNEL+ cells within remyelinating lesions were Iba1+ microglia/macrophages. These results indicate that repairing lesions are characterized by a high degree of glial cell death and suggest that monitoring cell death-related by-products might have clinical value in the setting of remyelination.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
7.00
自引率
0.00%
发文量
0
审稿时长
6 weeks
期刊最新文献
Significant oligodendrocyte progenitor and microglial cell death is a feature of remyelination following toxin-induced experimental demyelination. Seizures and premature death in mice with targeted Kv1.1 deficiency in corticolimbic circuits. Brain aging rejuvenation factors in adults with genetic and sporadic neurodegenerative disease. Lipid-mediated resolution of inflammation and survival in amyotrophic lateral sclerosis. Know your brain aging to know your resilience in neurodegenerative diseases.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1