{"title":"Aberrant fumarate metabolism links interferon release in diffuse systemic sclerosis.","authors":"Thomas Steadman, Steven O'Reilly","doi":"10.1016/j.jdermsci.2025.01.002","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Systemic Sclerosis (SSc) is an idiopathic rheumatic inflammatory disease that is characterised by inflammation and skin fibrosis. Type I interferon is significantly elevated in the disease.</p><p><strong>Objective: </strong>The objective of this study is to determine the role of the TCA cycle metabolite fumarate in SSc.</p><p><strong>Methods: </strong>CD14 + cells were isolated from 12 SSc patients and healthy controls. Fumarate hydratase and Interferon dependant genes were quantified by qPCR. In vitro inhibition of STING using a small molecule STING inhibitor and enforced mitophagy was induced in vitro and IFN-β release was quantified. VDAC1 inhibitor was used to determine the role of mt DNA release in IFN-β induction. In whole skin biopsies fumarate and succinate was quantified.</p><p><strong>Results: </strong>Fumarate Hydratase is significantly reduced in SSc monocytes. Type I interferon is also elevated in monocytes from SSc donors compared to controls. The mitochondrial-specific stress marker GDF-15 was significantly elevated in SSc monocytes. Blockade of the cGAS-STING pathway chemically reduced interferon-β release and induced mitophagy also retarded release of the cytokine in response to LPS stimulation. Inhibition of VDAC1 mitigated IFN-β, as did the depletion of mitochondria in cells. Furthermore, the itaconate derivative 4-octyl itaconate reduced IFN-β induction in SSc monocytes, that was downstream of mitochondrial nucleic acid release. Fumarate, but not succinate was elevated in whole skin biopsies.</p><p><strong>Conclusion: </strong>Fumarate metabolism links interferon release in SSc and may underlie the aberrant expression of interferon in SSc via cytosolic DNA released from mitochondria.</p>","PeriodicalId":94076,"journal":{"name":"Journal of dermatological science","volume":" ","pages":""},"PeriodicalIF":4.6000,"publicationDate":"2025-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of dermatological science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/j.jdermsci.2025.01.002","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Background: Systemic Sclerosis (SSc) is an idiopathic rheumatic inflammatory disease that is characterised by inflammation and skin fibrosis. Type I interferon is significantly elevated in the disease.
Objective: The objective of this study is to determine the role of the TCA cycle metabolite fumarate in SSc.
Methods: CD14 + cells were isolated from 12 SSc patients and healthy controls. Fumarate hydratase and Interferon dependant genes were quantified by qPCR. In vitro inhibition of STING using a small molecule STING inhibitor and enforced mitophagy was induced in vitro and IFN-β release was quantified. VDAC1 inhibitor was used to determine the role of mt DNA release in IFN-β induction. In whole skin biopsies fumarate and succinate was quantified.
Results: Fumarate Hydratase is significantly reduced in SSc monocytes. Type I interferon is also elevated in monocytes from SSc donors compared to controls. The mitochondrial-specific stress marker GDF-15 was significantly elevated in SSc monocytes. Blockade of the cGAS-STING pathway chemically reduced interferon-β release and induced mitophagy also retarded release of the cytokine in response to LPS stimulation. Inhibition of VDAC1 mitigated IFN-β, as did the depletion of mitochondria in cells. Furthermore, the itaconate derivative 4-octyl itaconate reduced IFN-β induction in SSc monocytes, that was downstream of mitochondrial nucleic acid release. Fumarate, but not succinate was elevated in whole skin biopsies.
Conclusion: Fumarate metabolism links interferon release in SSc and may underlie the aberrant expression of interferon in SSc via cytosolic DNA released from mitochondria.