{"title":"Fine-tuned calcium homeostasis is crucial for murine erythropoiesis.","authors":"Shujing Zhang, Yuanzhen Zhang, Yanxia Li, Zhiyue Zhang, Hui Li, Miaomiao Xu, Zhiyuan Lu, Yuan Li, Baobing Zhao","doi":"10.1111/febs.17401","DOIUrl":null,"url":null,"abstract":"<p><p>Intracellular calcium (Ca<sup>2+</sup>) is a crucial signaling molecule involved in multiple cellular processes. However, the functional role of Ca<sup>2+</sup> in terminal erythropoiesis remains unclear. Here, we uncovered the dynamics of intracellular Ca<sup>2+</sup> levels during mouse erythroid development. By using the calcium ionophore ionomycin, we found that low Ca<sup>2+</sup> levels are required for the expansion of erythroid progenitors, whereas higher Ca<sup>2+</sup> levels led to the differentiation and proliferation of early-stage erythroblasts. Intracellular Ca<sup>2+</sup> levels were then gradually reduced, which is required for the nuclear condensation and polarisation at the late stage of erythroid differentiation. However, elevated Ca<sup>2+</sup> levels in late-stage erythroblasts, achieved by using ionomycin, promoted erythroid enucleation via calmodulin (CaM)/calcium/calmodulin-dependent protein kinase kinase 1 (CaMKK1)/AMPK signaling. These data suggest that the reduction of intracellular Ca<sup>2+</sup> plays a double-edged role at the late stage of erythroid differentiation, which is beneficial for nuclear condensation but compromises terminal enucleation. Our study highlighted the importance of the fine-tuned regulation of intracellular Ca<sup>2+</sup> during terminal erythropoiesis, providing cues for the efficient generation of mature and enucleated erythrocytes in vitro.</p>","PeriodicalId":94226,"journal":{"name":"The FEBS journal","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-01-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The FEBS journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1111/febs.17401","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Intracellular calcium (Ca2+) is a crucial signaling molecule involved in multiple cellular processes. However, the functional role of Ca2+ in terminal erythropoiesis remains unclear. Here, we uncovered the dynamics of intracellular Ca2+ levels during mouse erythroid development. By using the calcium ionophore ionomycin, we found that low Ca2+ levels are required for the expansion of erythroid progenitors, whereas higher Ca2+ levels led to the differentiation and proliferation of early-stage erythroblasts. Intracellular Ca2+ levels were then gradually reduced, which is required for the nuclear condensation and polarisation at the late stage of erythroid differentiation. However, elevated Ca2+ levels in late-stage erythroblasts, achieved by using ionomycin, promoted erythroid enucleation via calmodulin (CaM)/calcium/calmodulin-dependent protein kinase kinase 1 (CaMKK1)/AMPK signaling. These data suggest that the reduction of intracellular Ca2+ plays a double-edged role at the late stage of erythroid differentiation, which is beneficial for nuclear condensation but compromises terminal enucleation. Our study highlighted the importance of the fine-tuned regulation of intracellular Ca2+ during terminal erythropoiesis, providing cues for the efficient generation of mature and enucleated erythrocytes in vitro.