Physical drivers of bio-optical properties in the Guangdong-Hong Kong-Macao Greater Bay Area during the winter dry season

IF 2.8 2区 生物学 Q1 MARINE & FRESHWATER BIOLOGY Frontiers in Marine Science Pub Date : 2025-01-22 DOI:10.3389/fmars.2024.1523111
Wenlong Xu, Shuibo Hu, Alex Hayward, Zuomin Wang, Shuaiwei Liu
{"title":"Physical drivers of bio-optical properties in the Guangdong-Hong Kong-Macao Greater Bay Area during the winter dry season","authors":"Wenlong Xu, Shuibo Hu, Alex Hayward, Zuomin Wang, Shuaiwei Liu","doi":"10.3389/fmars.2024.1523111","DOIUrl":null,"url":null,"abstract":"Understanding the variability of bio-optical properties in coastal seas is essential to assessing the impact of natural and anthropogenic activities on the quality of the coastal environments and their resources. This study investigated the vertical distribution of bio-optical properties and their potential driving forces in the Guangdong-Hong Kong-Macao Greater Bay Area (GBA) using a bio-optical dataset collected during the winter dry season. The hydrographic and biogeochemical properties observed across the GBA exhibited significant spatial variability, allowing the classification of the waters into three distinct regions: estuarine diluted water (EDW), Guangdong coastal current water (GCCW), and dense shelf water (DSW). Our findings show that EDW exhibited beam attenuation and optical backscatter coefficients an order of magnitude greater compared to the other two regions, which was attributed to factors such as higher concentrations of suspended particulate matter and organic material from estuarine sources. In contrast, the GCCW was characterized by lower salinity, temperature, and suspended particulate matter and displayed reduced turbidity near the coast, whereas nutrient-rich GCCW waters transported to the mid-shelf region supported increased phytoplankton biomass and a greater abundance of micro-phytoplankton. By exploring the bio-optical characteristics and their underlying processes in the GBA, this study enhances our understanding of the complex dynamics shaping the optical properties of coastal waters in this heavily urbanized region.","PeriodicalId":12479,"journal":{"name":"Frontiers in Marine Science","volume":"84 1","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2025-01-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Marine Science","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.3389/fmars.2024.1523111","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MARINE & FRESHWATER BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Understanding the variability of bio-optical properties in coastal seas is essential to assessing the impact of natural and anthropogenic activities on the quality of the coastal environments and their resources. This study investigated the vertical distribution of bio-optical properties and their potential driving forces in the Guangdong-Hong Kong-Macao Greater Bay Area (GBA) using a bio-optical dataset collected during the winter dry season. The hydrographic and biogeochemical properties observed across the GBA exhibited significant spatial variability, allowing the classification of the waters into three distinct regions: estuarine diluted water (EDW), Guangdong coastal current water (GCCW), and dense shelf water (DSW). Our findings show that EDW exhibited beam attenuation and optical backscatter coefficients an order of magnitude greater compared to the other two regions, which was attributed to factors such as higher concentrations of suspended particulate matter and organic material from estuarine sources. In contrast, the GCCW was characterized by lower salinity, temperature, and suspended particulate matter and displayed reduced turbidity near the coast, whereas nutrient-rich GCCW waters transported to the mid-shelf region supported increased phytoplankton biomass and a greater abundance of micro-phytoplankton. By exploring the bio-optical characteristics and their underlying processes in the GBA, this study enhances our understanding of the complex dynamics shaping the optical properties of coastal waters in this heavily urbanized region.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
粤港澳大湾区冬季旱季生物光学特性的物理驱动因素
了解海岸带生物光学特性的变化对于评估自然和人为活动对海岸带环境及其资源质量的影响至关重要。利用粤港澳大湾区冬季旱季生物光学数据,研究了粤港澳大湾区生物光学特性的垂直分布特征及其潜在驱动力。整个大湾区的水文和生物地球化学特征表现出显著的空间变动性,将水域划分为3个不同的区域:河口稀释水(EDW)、广东沿海流(GCCW)和密集陆架水(DSW)。研究结果表明,与其他两个地区相比,EDW的光束衰减和光学后向散射系数要大一个数量级,这是由于河口源的悬浮颗粒物和有机物质浓度较高等因素造成的。相比之下,GCCW的特点是盐度、温度和悬浮颗粒物较低,并且在海岸附近表现出浊度降低,而营养丰富的GCCW水输送到中陆架区域,支持浮游植物生物量增加和微浮游植物丰度增加。通过探索大湾区的生物光学特征及其潜在过程,本研究加深了我们对这一高度城市化地区沿海水域光学特性形成的复杂动力学的理解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Frontiers in Marine Science
Frontiers in Marine Science Agricultural and Biological Sciences-Aquatic Science
CiteScore
5.10
自引率
16.20%
发文量
2443
审稿时长
14 weeks
期刊介绍: Frontiers in Marine Science publishes rigorously peer-reviewed research that advances our understanding of all aspects of the environment, biology, ecosystem functioning and human interactions with the oceans. Field Chief Editor Carlos M. Duarte at King Abdullah University of Science and Technology Thuwal is supported by an outstanding Editorial Board of international researchers. This multidisciplinary open-access journal is at the forefront of disseminating and communicating scientific knowledge and impactful discoveries to researchers, academics, policy makers and the public worldwide. With the human population predicted to reach 9 billion people by 2050, it is clear that traditional land resources will not suffice to meet the demand for food or energy, required to support high-quality livelihoods. As a result, the oceans are emerging as a source of untapped assets, with new innovative industries, such as aquaculture, marine biotechnology, marine energy and deep-sea mining growing rapidly under a new era characterized by rapid growth of a blue, ocean-based economy. The sustainability of the blue economy is closely dependent on our knowledge about how to mitigate the impacts of the multiple pressures on the ocean ecosystem associated with the increased scale and diversification of industry operations in the ocean and global human pressures on the environment. Therefore, Frontiers in Marine Science particularly welcomes the communication of research outcomes addressing ocean-based solutions for the emerging challenges, including improved forecasting and observational capacities, understanding biodiversity and ecosystem problems, locally and globally, effective management strategies to maintain ocean health, and an improved capacity to sustainably derive resources from the oceans.
期刊最新文献
Effect of delayed sea ice retreat on zooplankton communities in the Pacific Arctic Ocean: a generalized dissimilarity modeling approach Estimates of disclosure and victimization rates for fishery observers in the maritime workplace The size-fractionated composition of particulate biogenic silica and its ecological significance in the Changjiang Estuary area Location and natural history are key to determining impact of the 2021 atmospheric heatwave on Pacific Northwest rocky intertidal communities Two new species of Plagiostomum (Prolecithophora, Plagiostomidae) from China with its morphology, phylogeny, and reproductive strategy
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1