{"title":"Detection and quantification of nanoparticles in runoff from a highly trafficked urban motorway","authors":"Malak DIA, Pierre-Emmanuel Peyneau, Denis Courtier-Murias, Béatrice Béchet","doi":"10.1039/d4en00552j","DOIUrl":null,"url":null,"abstract":"Urban rainfall and runoff are major transport vectors for pollutants into the aquatic environment. In this context, road traffic is a significant factor in the contamination of the urban environment in general, and runoff in particular. Some metals, such as Cu, Zn, Fe, and Ti, have been found in dissolved fraction (< 0.45 μm) in such water. The present study focuses on characterizing the number concentration and mass distribution of nanoparticles (NPs) containing Ti, Fe, Zn, and Cu in runoff from a heavily trafficked urban motorway (≈ 100,000 vehicles/day) in Nantes, western France. Seven runoff samples were taken between July 2023 and March 2024. A rainfall sample was also taken in the same proximity for comparative purposes, providing knowledge of atmospheric wet deposition levels. Using two sample preparation methods, filtration, and ultra-filtration, single particle ICP-MS (sp-ICP-MS) analysis confirmed the existence of the targeted elements in nanoparticulate fraction. Ti was found to be the most abundant element, followed by Fe, while Zn and Cu were less prevalent, with average number concentrations of 4.83 x 10^8, 1.68 x 10^8, 7.78 x 10^7 and 9.04 x 10^7 particles/L, respectively. Except for Fe, runoff samples exhibited higher concentrations of Ti, Zn, and Cu nanoparticles compared to the rainfall sample, with a larger average equivalent diameter indicating a likely anthropogenic origin. Comparisons between sample preparation methods demonstrates that the effectiveness of ultrafiltration is element dependent.","PeriodicalId":73,"journal":{"name":"Environmental Science: Nano","volume":"45 1","pages":""},"PeriodicalIF":5.8000,"publicationDate":"2025-01-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Science: Nano","FirstCategoryId":"6","ListUrlMain":"https://doi.org/10.1039/d4en00552j","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Urban rainfall and runoff are major transport vectors for pollutants into the aquatic environment. In this context, road traffic is a significant factor in the contamination of the urban environment in general, and runoff in particular. Some metals, such as Cu, Zn, Fe, and Ti, have been found in dissolved fraction (< 0.45 μm) in such water. The present study focuses on characterizing the number concentration and mass distribution of nanoparticles (NPs) containing Ti, Fe, Zn, and Cu in runoff from a heavily trafficked urban motorway (≈ 100,000 vehicles/day) in Nantes, western France. Seven runoff samples were taken between July 2023 and March 2024. A rainfall sample was also taken in the same proximity for comparative purposes, providing knowledge of atmospheric wet deposition levels. Using two sample preparation methods, filtration, and ultra-filtration, single particle ICP-MS (sp-ICP-MS) analysis confirmed the existence of the targeted elements in nanoparticulate fraction. Ti was found to be the most abundant element, followed by Fe, while Zn and Cu were less prevalent, with average number concentrations of 4.83 x 10^8, 1.68 x 10^8, 7.78 x 10^7 and 9.04 x 10^7 particles/L, respectively. Except for Fe, runoff samples exhibited higher concentrations of Ti, Zn, and Cu nanoparticles compared to the rainfall sample, with a larger average equivalent diameter indicating a likely anthropogenic origin. Comparisons between sample preparation methods demonstrates that the effectiveness of ultrafiltration is element dependent.
城市降雨和径流是污染物进入水生环境的主要运输载体。在这方面,道路交通是一般城市环境污染的一个重要因素,特别是径流污染。一些金属,如Cu、Zn、Fe和Ti,已在溶解馏分(<;0.45 μm)。本研究主要研究了法国西部南特一条交通繁忙的城市高速公路(约10万辆/天)径流中含有Ti、Fe、Zn和Cu的纳米颗粒(NPs)的数量、浓度和质量分布。在2023年7月至2024年3月期间采集了7份径流样本。为了比较的目的,还在同一附近采集了降雨样本,提供了大气湿沉积水平的知识。采用过滤和超滤两种样品制备方法,单颗粒ICP-MS (sp-ICP-MS)分析证实了纳米颗粒中目标元素的存在。其中,Ti含量最高,Fe次之,Zn和Cu含量较低,平均浓度分别为4.83 x 10^8、1.68 x 10^8、7.78 x 10^7和9.04 x 10^7粒/L。除铁外,径流样品中Ti、Zn和Cu纳米颗粒的浓度高于降雨样品,平均当量直径更大,表明可能是人为原因。不同样品制备方法的比较表明,超滤的效果与元素有关。
期刊介绍:
Environmental Science: Nano serves as a comprehensive and high-impact peer-reviewed source of information on the design and demonstration of engineered nanomaterials for environment-based applications. It also covers the interactions between engineered, natural, and incidental nanomaterials with biological and environmental systems. This scope includes, but is not limited to, the following topic areas:
Novel nanomaterial-based applications for water, air, soil, food, and energy sustainability
Nanomaterial interactions with biological systems and nanotoxicology
Environmental fate, reactivity, and transformations of nanoscale materials
Nanoscale processes in the environment
Sustainable nanotechnology including rational nanomaterial design, life cycle assessment, risk/benefit analysis