Yue Zhang, Ning Wei, Liwen Li, Yuan Liu, Changxiong Huang, Zhen Li, Yujie Huang, Dengsong Zhang, Joseph S. Francisco, Junhua Zhao, Chunlei Wang, Xiao Cheng Zeng
{"title":"Fully Atomistic Molecular Dynamics Simulation of Ice Nucleation Near an Antifreeze Protein","authors":"Yue Zhang, Ning Wei, Liwen Li, Yuan Liu, Changxiong Huang, Zhen Li, Yujie Huang, Dengsong Zhang, Joseph S. Francisco, Junhua Zhao, Chunlei Wang, Xiao Cheng Zeng","doi":"10.1021/jacs.4c15210","DOIUrl":null,"url":null,"abstract":"Heterogeneous ice nucleation is a widespread phenomenon in nature. Despite extensive research on ice nucleation near biological antifreeze proteins, a probe for ice nucleation and growth processes at the atomic level is still lacking. Herein, we present simulation evidence of the heterogeneous ice nucleation process on the ice-binding surface (IBS) of the <i>Tenebrio molitor</i> antifreeze protein (TmAFP). Our all-atomistic molecular dynamics simulations reveal detailed steps toward precritical nucleus formation from one-dimensional (1D) channel water to a 2D ice nanolayer and, finally, a 3D ice nucleus. Compared with homogeneous ice nucleation under the same supercooling conditions, the IBS of TmAFP can markedly reduce the critical size of the ice embryo and lower the nucleation free energy barrier, thereby favoring ice nucleation. Additionally, through artificial mutation of selected functional groups on the IBS, we gain deeper insights into how the specific functional groups of the IBS affect ice nucleation. We highlight that the carbonyl groups in the backbone play a crucial role by providing fixed locations for channel water. This function is essential for ensuring alignment between the 2D ice nanolayer and the ice lattice structure.","PeriodicalId":49,"journal":{"name":"Journal of the American Chemical Society","volume":"28 1","pages":""},"PeriodicalIF":14.4000,"publicationDate":"2025-01-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the American Chemical Society","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/jacs.4c15210","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Heterogeneous ice nucleation is a widespread phenomenon in nature. Despite extensive research on ice nucleation near biological antifreeze proteins, a probe for ice nucleation and growth processes at the atomic level is still lacking. Herein, we present simulation evidence of the heterogeneous ice nucleation process on the ice-binding surface (IBS) of the Tenebrio molitor antifreeze protein (TmAFP). Our all-atomistic molecular dynamics simulations reveal detailed steps toward precritical nucleus formation from one-dimensional (1D) channel water to a 2D ice nanolayer and, finally, a 3D ice nucleus. Compared with homogeneous ice nucleation under the same supercooling conditions, the IBS of TmAFP can markedly reduce the critical size of the ice embryo and lower the nucleation free energy barrier, thereby favoring ice nucleation. Additionally, through artificial mutation of selected functional groups on the IBS, we gain deeper insights into how the specific functional groups of the IBS affect ice nucleation. We highlight that the carbonyl groups in the backbone play a crucial role by providing fixed locations for channel water. This function is essential for ensuring alignment between the 2D ice nanolayer and the ice lattice structure.
期刊介绍:
The flagship journal of the American Chemical Society, known as the Journal of the American Chemical Society (JACS), has been a prestigious publication since its establishment in 1879. It holds a preeminent position in the field of chemistry and related interdisciplinary sciences. JACS is committed to disseminating cutting-edge research papers, covering a wide range of topics, and encompasses approximately 19,000 pages of Articles, Communications, and Perspectives annually. With a weekly publication frequency, JACS plays a vital role in advancing the field of chemistry by providing essential research.