Josefine A. Olsson, Hisham Hafez, Sabbie A. Miller, Karen L. Scrivener
{"title":"Greenhouse Gas Emissions and Decarbonization Potential of Global Fired Clay Brick Production","authors":"Josefine A. Olsson, Hisham Hafez, Sabbie A. Miller, Karen L. Scrivener","doi":"10.1021/acs.est.4c08994","DOIUrl":null,"url":null,"abstract":"Fired clay bricks (FCBs) are a dominant building material globally due to their low cost and simplicity of production, especially in low- and middle-income countries. With a projected rising housing demand, commensurate growth in brick demand is anticipated, the production of which could result in significant greenhouse gas (GHG) emissions. Robust models are needed to estimate brick demand and emissions to systematically address decarbonization pathways. Few sources report production values; hence, we present two novel proxy models: (i) a consumption prediction model, relying on country-specific clay extraction data, dynamic building stock modeling, and average material intensity use allowing for projections to 2050; and (ii) a GHG emissions model, using literature-based data and production technology-specific inputs. Based on these models, the current global FCB consumption is estimated as 2.18 Gt annually, resulting in approximately 500 million tCO<sub>2</sub>e (1% of current global GHG emissions). If unaddressed, this fraction could increase to 3.5–5% in 2050 considering a moderate SSP 2-4.5 climate change mitigation scenario. Consequently, we explored three potential decarbonization pathways: (i) improving energy efficiency; (ii) shifting production to best practices; and (iii) replacing half of FCB demand with hollow concrete blocks, resulting in 27%, 49%, and 51% reduction in GHG emissions, respectively.","PeriodicalId":36,"journal":{"name":"环境科学与技术","volume":"57 1","pages":""},"PeriodicalIF":10.8000,"publicationDate":"2025-01-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"环境科学与技术","FirstCategoryId":"1","ListUrlMain":"https://doi.org/10.1021/acs.est.4c08994","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
引用次数: 0
Abstract
Fired clay bricks (FCBs) are a dominant building material globally due to their low cost and simplicity of production, especially in low- and middle-income countries. With a projected rising housing demand, commensurate growth in brick demand is anticipated, the production of which could result in significant greenhouse gas (GHG) emissions. Robust models are needed to estimate brick demand and emissions to systematically address decarbonization pathways. Few sources report production values; hence, we present two novel proxy models: (i) a consumption prediction model, relying on country-specific clay extraction data, dynamic building stock modeling, and average material intensity use allowing for projections to 2050; and (ii) a GHG emissions model, using literature-based data and production technology-specific inputs. Based on these models, the current global FCB consumption is estimated as 2.18 Gt annually, resulting in approximately 500 million tCO2e (1% of current global GHG emissions). If unaddressed, this fraction could increase to 3.5–5% in 2050 considering a moderate SSP 2-4.5 climate change mitigation scenario. Consequently, we explored three potential decarbonization pathways: (i) improving energy efficiency; (ii) shifting production to best practices; and (iii) replacing half of FCB demand with hollow concrete blocks, resulting in 27%, 49%, and 51% reduction in GHG emissions, respectively.
期刊介绍:
Environmental Science & Technology (ES&T) is a co-sponsored academic and technical magazine by the Hubei Provincial Environmental Protection Bureau and the Hubei Provincial Academy of Environmental Sciences.
Environmental Science & Technology (ES&T) holds the status of Chinese core journals, scientific papers source journals of China, Chinese Science Citation Database source journals, and Chinese Academic Journal Comprehensive Evaluation Database source journals. This publication focuses on the academic field of environmental protection, featuring articles related to environmental protection and technical advancements.