In-situ loaded PPy hydrogel for efficient atmospheric water harvesting without any energy consumption

IF 10 2区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY Materials Today Physics Pub Date : 2025-02-01 DOI:10.1016/j.mtphys.2025.101658
Danyan Zhan , Changhui Fu , Zhengting Yu , Guangyi Tian , Yuxuan He , Xionggang Chen , Zhiguang Guo
{"title":"In-situ loaded PPy hydrogel for efficient atmospheric water harvesting without any energy consumption","authors":"Danyan Zhan ,&nbsp;Changhui Fu ,&nbsp;Zhengting Yu ,&nbsp;Guangyi Tian ,&nbsp;Yuxuan He ,&nbsp;Xionggang Chen ,&nbsp;Zhiguang Guo","doi":"10.1016/j.mtphys.2025.101658","DOIUrl":null,"url":null,"abstract":"<div><div>Hygroscopic salt-hydrogel-based atmospheric water harvesting (HAWH) technology represents an auspicious approach to alleviating the water crisis, as it is not limited by factors such as climactic. Reducing hygroscopic salt leakage is of the utmost importance to maintaining the technology's consistent performance. Consequently, we have developed a composite hygroscopic material (PPy-AAC-LiCl) with in situ loaded polypyrrole (PPy) as a photothermite. The in-situ loading of PPy not only achieves the photothermal performance of PPy-AAC-LiCl but also enhances the hygroscopic performance, which is due to the presence of nitrogen atoms in the structure facilitating the formation of hydrogen bonds between water molecules, and reduces the leakage of hygroscopic salts attributed to its ability to inhibit the increase in pore size after hygroscopicity of PPy-AAC-LiCl. The experimental results show that PPy-AAC-LiCl has effective hygroscopic performance at relative humidity (RH) of 30 %–90 %. The hygroscopicity at 25 °C and RH 70 % was about 1.53 g<sub>water</sub> g<sub>adsorbents</sub><sup>−1</sup> after 12 h. After ten hygroscopicity-desorption cycles, the hygroscopicity of the samples did not decrease significantly, and no white crystals appeared on the surface of the samples during the desorption process. Furthermore, PPy-AAC-LiCl demonstrated effective atmospheric water harvesting capabilities in outdoor trials, exhibiting a desorption rate of 87.6 % and a moisture absorption rate of 1.26 g<sub>water</sub> g<sub>adsorbents</sub><sup>−1</sup>. The preparation of this simple and environmentally friendly hygroscopic composite material lays the foundation for the future development of atmospheric water materials.</div></div>","PeriodicalId":18253,"journal":{"name":"Materials Today Physics","volume":"51 ","pages":"Article 101658"},"PeriodicalIF":10.0000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Today Physics","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2542529325000148","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Hygroscopic salt-hydrogel-based atmospheric water harvesting (HAWH) technology represents an auspicious approach to alleviating the water crisis, as it is not limited by factors such as climactic. Reducing hygroscopic salt leakage is of the utmost importance to maintaining the technology's consistent performance. Consequently, we have developed a composite hygroscopic material (PPy-AAC-LiCl) with in situ loaded polypyrrole (PPy) as a photothermite. The in-situ loading of PPy not only achieves the photothermal performance of PPy-AAC-LiCl but also enhances the hygroscopic performance, which is due to the presence of nitrogen atoms in the structure facilitating the formation of hydrogen bonds between water molecules, and reduces the leakage of hygroscopic salts attributed to its ability to inhibit the increase in pore size after hygroscopicity of PPy-AAC-LiCl. The experimental results show that PPy-AAC-LiCl has effective hygroscopic performance at relative humidity (RH) of 30 %–90 %. The hygroscopicity at 25 °C and RH 70 % was about 1.53 gwater gadsorbents−1 after 12 h. After ten hygroscopicity-desorption cycles, the hygroscopicity of the samples did not decrease significantly, and no white crystals appeared on the surface of the samples during the desorption process. Furthermore, PPy-AAC-LiCl demonstrated effective atmospheric water harvesting capabilities in outdoor trials, exhibiting a desorption rate of 87.6 % and a moisture absorption rate of 1.26 gwater gadsorbents−1. The preparation of this simple and environmentally friendly hygroscopic composite material lays the foundation for the future development of atmospheric water materials.

Abstract Image

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
原位加载PPy水凝胶,有效的大气水收集,没有任何能源消耗
吸湿盐水凝胶大气集水(HAWH)技术是缓解水危机的一种好方法,因为它不受气候等因素的限制。减少吸湿性盐泄漏对于保持该技术的稳定性能至关重要。因此,我们开发了一种复合吸湿材料(PPy- aac - licl),以原位负载聚吡咯(PPy)作为光铝热剂。原位加载PPy不仅实现了PPy- aac - licl的光热性能,还增强了其吸湿性能,这是由于其结构中存在氮原子,促进了水分子间氢键的形成,减少了吸湿盐的泄漏,这是由于其能够抑制PPy- aac - licl吸湿后孔径的增加。实验结果表明,PPy-AAC-LiCl在相对湿度(RH)为30% ~ 90%时具有有效的吸湿性能。在25℃、相对湿度70%条件下,12 h吸湿率约为1.53 ggadsorts -1。经过10次吸湿-脱附循环后,样品的吸湿率没有明显下降,在脱附过程中样品表面没有出现白色晶体。此外,py - aac - licl在室外试验中表现出有效的大气集水能力,解吸率为87.6%,吸湿率为1.26 gwater gadsorts -1。这种简单环保的吸湿复合材料的制备,为未来大气水材料的发展奠定了基础。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
文献相关原料
公司名称
产品信息
阿拉丁
Acrylic acid (AA)
阿拉丁
Acrylamide (AAM)
来源期刊
Materials Today Physics
Materials Today Physics Materials Science-General Materials Science
CiteScore
14.00
自引率
7.80%
发文量
284
审稿时长
15 days
期刊介绍: Materials Today Physics is a multi-disciplinary journal focused on the physics of materials, encompassing both the physical properties and materials synthesis. Operating at the interface of physics and materials science, this journal covers one of the largest and most dynamic fields within physical science. The forefront research in materials physics is driving advancements in new materials, uncovering new physics, and fostering novel applications at an unprecedented pace.
期刊最新文献
MXene Nb2C/MoS2 heterostructure: Nonlinear optical properties and a new broadband saturable absorber for ultrafast photonics Low-temperature annealing induces superior shock-resistant performance in FeCoCrNiCu high-entropy alloy Effectively Tuning Phonon Transport across Al/nonmetal Interfaces through Controlling Interfacial Bonding Strength without Modifying Thermal Conductivity Vacancy regulation to achieve N-type high thermoelectric performance PbSe through titanium-incorporation Crystalline FeOCl as a novel saturable absorber for broadband ultrafast photonic applications
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1