Enhanced Performance and Durability of Zinc–Air Batteries Utilizing W-Doped Cobalt Pentlandite Catalysts

IF 18.5 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY Advanced Functional Materials Pub Date : 2025-01-23 DOI:10.1002/adfm.202419515
Ning Liu, Zhijian Peng, Jiaming Sun, Ye Tian, Lefu Mei, Guocheng Lv, Ren He, Andreu Cabot, Junying Zhang
{"title":"Enhanced Performance and Durability of Zinc–Air Batteries Utilizing W-Doped Cobalt Pentlandite Catalysts","authors":"Ning Liu, Zhijian Peng, Jiaming Sun, Ye Tian, Lefu Mei, Guocheng Lv, Ren He, Andreu Cabot, Junying Zhang","doi":"10.1002/adfm.202419515","DOIUrl":null,"url":null,"abstract":"The design of cost-effective electrocatalysts is critical for advancing sustainable energy technologies, particularly for key reactions like the oxygen evolution reaction (OER) and the oxygen reduction reaction (ORR) in water electrolyzers and metal–air batteries. Cobalt pentlandite (CNFS) has emerged as a promising candidate, offering high conductivity, stability, and the advantage of using abundant elements. In this study, density functional theory (DFT) calculations reveal that tungsten (W) doping in CNFS, combined with an increased concentration of sulfur vacancies, can effectively shift the d-band center downward enhancing metal-sulfur orbital hybridization. These modifications facilitate the desorption of oxygen intermediate while maintaining structural integrity. Additionally, the engineering of this material with a hollow architecture further increases active site exposure, significantly improving catalytic activity. As a result of this multifaceted approach, the W-doped CNFS catalyst achieves a remarkably low OER overpotential of 241 mV at 50 mA cm⁻<sup>2</sup>, alongside enhanced ORR activity. Furthermore, the catalyst demonstrates excellent performance in rechargeable zinc–air batteries (ZABs), achieving a peak power density of 100 mW cm⁻<sup>2</sup> and sustaining over 650 h of cycling at 4 mA cm⁻<sup>2</sup>. Overall, this study presents a viable strategy for improving ZAB performance and reducing costs by utilizing efficient and cost-effective metal sulfides with a cobalt pentlandite structure.","PeriodicalId":112,"journal":{"name":"Advanced Functional Materials","volume":"81 1","pages":""},"PeriodicalIF":18.5000,"publicationDate":"2025-01-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Functional Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/adfm.202419515","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The design of cost-effective electrocatalysts is critical for advancing sustainable energy technologies, particularly for key reactions like the oxygen evolution reaction (OER) and the oxygen reduction reaction (ORR) in water electrolyzers and metal–air batteries. Cobalt pentlandite (CNFS) has emerged as a promising candidate, offering high conductivity, stability, and the advantage of using abundant elements. In this study, density functional theory (DFT) calculations reveal that tungsten (W) doping in CNFS, combined with an increased concentration of sulfur vacancies, can effectively shift the d-band center downward enhancing metal-sulfur orbital hybridization. These modifications facilitate the desorption of oxygen intermediate while maintaining structural integrity. Additionally, the engineering of this material with a hollow architecture further increases active site exposure, significantly improving catalytic activity. As a result of this multifaceted approach, the W-doped CNFS catalyst achieves a remarkably low OER overpotential of 241 mV at 50 mA cm⁻2, alongside enhanced ORR activity. Furthermore, the catalyst demonstrates excellent performance in rechargeable zinc–air batteries (ZABs), achieving a peak power density of 100 mW cm⁻2 and sustaining over 650 h of cycling at 4 mA cm⁻2. Overall, this study presents a viable strategy for improving ZAB performance and reducing costs by utilizing efficient and cost-effective metal sulfides with a cobalt pentlandite structure.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用掺w钴镍镍矿催化剂提高锌-空气电池的性能和耐久性
设计具有成本效益的电催化剂对于推进可持续能源技术至关重要,特别是对于水电解槽和金属-空气电池中的析氧反应(OER)和氧还原反应(ORR)等关键反应。钴镍矿(CNFS)具有高导电性、稳定性和使用丰富元素的优势,已成为一种有前途的候选材料。在本研究中,密度泛函理论(DFT)计算表明,在CNFS中掺杂钨(W),结合硫空位浓度的增加,可以有效地将d带中心向下移动,增强金属-硫轨道杂化。这些修饰有利于氧中间体的脱附,同时保持结构的完整性。此外,该材料的中空结构进一步增加了活性位点的暴露,显著提高了催化活性。由于这种多角度的方法,w掺杂的CNFS催化剂在50 mA cm⁻2下达到了241 mV的极低的OER过电位,同时增强了ORR活性。此外,该催化剂在可充电锌空气电池(ZABs)中表现出优异的性能,峰值功率密度达到100毫瓦/平方⁻2,并在4毫安/平方⁻2下维持超过650小时的循环。总的来说,本研究提出了一种可行的策略,通过利用具有钴镍矿结构的高效和经济的金属硫化物来提高ZAB性能并降低成本。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Advanced Functional Materials
Advanced Functional Materials 工程技术-材料科学:综合
CiteScore
29.50
自引率
4.20%
发文量
2086
审稿时长
2.1 months
期刊介绍: Firmly established as a top-tier materials science journal, Advanced Functional Materials reports breakthrough research in all aspects of materials science, including nanotechnology, chemistry, physics, and biology every week. Advanced Functional Materials is known for its rapid and fair peer review, quality content, and high impact, making it the first choice of the international materials science community.
期刊最新文献
Dual-Channel Optical-to-Microwave Links Based on Space-Polarization-Division Multiplexed Optoelectronic Metasurface “One Stone, Two Birds”: Multi-Element Doping Induced Crystallinity Modulation for Large Current Density Oxygen Evolution Reaction Beyond Solution-Based Printing: Unveiling Innovations and Advancements in Solvent-Free Printing Technologies 3D In Vitro Glioma-Neuron-Astrocyte Biomimetic Composites Recapitulate Key Molecular Mechanisms Linked to Glioblastoma Multiforme Pathophysiology Electrolyte Solvent-Ion Configuration Deciphering Lithium Plating/Stripping Chemistry for High-Performance Lithium Metal Battery
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1