{"title":"Dynamic, Single-cell Monitoring of RNA Modifications Response to Viral Infection Using a Genetically Encoded Live-cell RNA Methylation Sensor","authors":"Ting Zhang, Hao Yang, Quanwei Yu, Yong Zhang, Yue Zhang, Xianglin Zhu, Xuhan Xia, Feng Li, Ruijie Deng","doi":"10.1002/anie.202418003","DOIUrl":null,"url":null,"abstract":"RNA modifications, such as N6-methylation of adenosine (m6A), serve as key regulators of cellular behaviors, and are highly dynamic; however, tools for dynamic monitoring of RNA modifications in live cells are lacking. Here, we develop a genetically encoded live-cell RNA methylation sensor that can dynamically monitor RNA m6A level at single-cell resolution. The sensor senses RNA m6A in cells via affinity-induced cytoplasmic retention using a nuclear location sequence-fused m6A reader. It allows for simultaneously measure RNA m6A dynamics and viral invasion at single-cell level. Based on the single-cell analytical tool, we found that SARS-CoV-2 infection enhances host-cell RNA m6A level, and high-level RNA m6A modification in host cells, in turn, facilitates viral infection. Particularly, Omicron, a variant of SARS-CoV-2, that features as high infection capacity, however, exhibits a reduced facilitation of m6A modification in host cells. In addition, the sensor can estimate viral inhibition via measuring cellular m6A level, that was explored for screening potential antiviral drugs. The methylation sensor can serve for elucidating the interplay between pathogens and host-cell epigenetics at single-cell level.","PeriodicalId":125,"journal":{"name":"Angewandte Chemie International Edition","volume":"12 1","pages":""},"PeriodicalIF":16.1000,"publicationDate":"2025-01-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Angewandte Chemie International Edition","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1002/anie.202418003","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
RNA modifications, such as N6-methylation of adenosine (m6A), serve as key regulators of cellular behaviors, and are highly dynamic; however, tools for dynamic monitoring of RNA modifications in live cells are lacking. Here, we develop a genetically encoded live-cell RNA methylation sensor that can dynamically monitor RNA m6A level at single-cell resolution. The sensor senses RNA m6A in cells via affinity-induced cytoplasmic retention using a nuclear location sequence-fused m6A reader. It allows for simultaneously measure RNA m6A dynamics and viral invasion at single-cell level. Based on the single-cell analytical tool, we found that SARS-CoV-2 infection enhances host-cell RNA m6A level, and high-level RNA m6A modification in host cells, in turn, facilitates viral infection. Particularly, Omicron, a variant of SARS-CoV-2, that features as high infection capacity, however, exhibits a reduced facilitation of m6A modification in host cells. In addition, the sensor can estimate viral inhibition via measuring cellular m6A level, that was explored for screening potential antiviral drugs. The methylation sensor can serve for elucidating the interplay between pathogens and host-cell epigenetics at single-cell level.
期刊介绍:
Angewandte Chemie, a journal of the German Chemical Society (GDCh), maintains a leading position among scholarly journals in general chemistry with an impressive Impact Factor of 16.6 (2022 Journal Citation Reports, Clarivate, 2023). Published weekly in a reader-friendly format, it features new articles almost every day. Established in 1887, Angewandte Chemie is a prominent chemistry journal, offering a dynamic blend of Review-type articles, Highlights, Communications, and Research Articles on a weekly basis, making it unique in the field.