Lan Wang, Chunyao Fang, Boran Xu, Yunlong Yu, Youmei Liu, Xianbiao Fu, Ang Cao, Qiangqiang Sun, Shaobing Zhou
{"title":"A ZnO‐based Catalytic System for the Synthesis of Hydrogen Peroxide from Air","authors":"Lan Wang, Chunyao Fang, Boran Xu, Yunlong Yu, Youmei Liu, Xianbiao Fu, Ang Cao, Qiangqiang Sun, Shaobing Zhou","doi":"10.1002/anie.202424984","DOIUrl":null,"url":null,"abstract":"Hydrogen peroxide (H2O2) has a wide range of applications as an eco‐friendly and sustainable oxidant. However, the clean, efficient and convenient synthesis of this compound remains challenging. This work demonstrates a rationally designed electron‐self‐supplied catalytic system capable of generating H2O2 from water and atmospheric oxygen without extra energy input. This catalytic system is made of a ZnO coating containing oxygen vacancies and a Zn substrate. The ZnO catalyst layer obtains electrons from the Zn substrate to synthesize H2O2. The H2O2 concentration produced by this catalytic system is up to 17.9 mM without any secondary processing. This remarkably high concentration is attributed to the formation of a liquid film on the hydrophilic ZnO surface that promotes the oxygen reduction reaction by accelerating the transfer of oxygen from the ambient air to the catalyst surface. By integrating with atmospheric fog collection, this system can continuously collect H2O2 directly from the air.","PeriodicalId":125,"journal":{"name":"Angewandte Chemie International Edition","volume":"56 1","pages":""},"PeriodicalIF":16.1000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Angewandte Chemie International Edition","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1002/anie.202424984","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Hydrogen peroxide (H2O2) has a wide range of applications as an eco‐friendly and sustainable oxidant. However, the clean, efficient and convenient synthesis of this compound remains challenging. This work demonstrates a rationally designed electron‐self‐supplied catalytic system capable of generating H2O2 from water and atmospheric oxygen without extra energy input. This catalytic system is made of a ZnO coating containing oxygen vacancies and a Zn substrate. The ZnO catalyst layer obtains electrons from the Zn substrate to synthesize H2O2. The H2O2 concentration produced by this catalytic system is up to 17.9 mM without any secondary processing. This remarkably high concentration is attributed to the formation of a liquid film on the hydrophilic ZnO surface that promotes the oxygen reduction reaction by accelerating the transfer of oxygen from the ambient air to the catalyst surface. By integrating with atmospheric fog collection, this system can continuously collect H2O2 directly from the air.
期刊介绍:
Angewandte Chemie, a journal of the German Chemical Society (GDCh), maintains a leading position among scholarly journals in general chemistry with an impressive Impact Factor of 16.6 (2022 Journal Citation Reports, Clarivate, 2023). Published weekly in a reader-friendly format, it features new articles almost every day. Established in 1887, Angewandte Chemie is a prominent chemistry journal, offering a dynamic blend of Review-type articles, Highlights, Communications, and Research Articles on a weekly basis, making it unique in the field.