{"title":"Switching CO2 Electroreduction toward C2+ Products and CH4 by Regulate the Protonation and Dimerization in Platinum/Copper Catalysts","authors":"Tailei Hou, Jiexin Zhu, Hongfei Gu, Xinyuan Li, Yiqing Sun, Ze Hua, Ruiwen Shao, Cheng Chen, Botao Hu, Liqiang Mai, Shenghua Chen, Dingsheng Wang, Jiatao Zhang","doi":"10.1002/anie.202424749","DOIUrl":null,"url":null,"abstract":"Copper (Cu)-based catalysts exhibit distinctive performance in the electrochemical CO2 reduction reaction (CO2RR) with complex mechanism and sophisticated types of products. The management of key intermediates *CO and *H is a necessary factor for achieving high product selectivity, but lack of efficient and versatile strategies. Herein, we designed Pt modified Cu catalysts to effectively modulate the competitive coverage of those intermediates. The Pt single-atoms and Pt nanoparticles modified Cu catalysts (denoted as Cu-Pt1 and Cu-PtNPs) precisely regulated the protonation and dimerization, with the faradaic efficiency (FE) of C2+ products up to 70.4% and the FE of CH4 reaching 57.7%, respectively. CO stripping experiments reveal that Pt1 sites could enhance the adsorption of *CO, while PtNPs exhibit *CO tolerance for H2O dissociation. In situ spectroscopic results further confirms that high coverage of *CO is achieved on Cu-Pt1, while *CHO on Cu-PtNPs might generate by additional water dissociation. As elucidated by theoretical studies, the interfacial sites of Cu-Pt1 would favor the *CO coverage promoting the evolution of *OCCO for C2+ products while PtNPs supplementarily accelerate H2O dissociation achieving *CHO for CH4. This work provides insights for efficient and targeted CO2 conversion by atomically design of active sites with engineered key intermediates coverage.","PeriodicalId":125,"journal":{"name":"Angewandte Chemie International Edition","volume":"74 1","pages":""},"PeriodicalIF":16.1000,"publicationDate":"2025-01-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Angewandte Chemie International Edition","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1002/anie.202424749","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Copper (Cu)-based catalysts exhibit distinctive performance in the electrochemical CO2 reduction reaction (CO2RR) with complex mechanism and sophisticated types of products. The management of key intermediates *CO and *H is a necessary factor for achieving high product selectivity, but lack of efficient and versatile strategies. Herein, we designed Pt modified Cu catalysts to effectively modulate the competitive coverage of those intermediates. The Pt single-atoms and Pt nanoparticles modified Cu catalysts (denoted as Cu-Pt1 and Cu-PtNPs) precisely regulated the protonation and dimerization, with the faradaic efficiency (FE) of C2+ products up to 70.4% and the FE of CH4 reaching 57.7%, respectively. CO stripping experiments reveal that Pt1 sites could enhance the adsorption of *CO, while PtNPs exhibit *CO tolerance for H2O dissociation. In situ spectroscopic results further confirms that high coverage of *CO is achieved on Cu-Pt1, while *CHO on Cu-PtNPs might generate by additional water dissociation. As elucidated by theoretical studies, the interfacial sites of Cu-Pt1 would favor the *CO coverage promoting the evolution of *OCCO for C2+ products while PtNPs supplementarily accelerate H2O dissociation achieving *CHO for CH4. This work provides insights for efficient and targeted CO2 conversion by atomically design of active sites with engineered key intermediates coverage.
期刊介绍:
Angewandte Chemie, a journal of the German Chemical Society (GDCh), maintains a leading position among scholarly journals in general chemistry with an impressive Impact Factor of 16.6 (2022 Journal Citation Reports, Clarivate, 2023). Published weekly in a reader-friendly format, it features new articles almost every day. Established in 1887, Angewandte Chemie is a prominent chemistry journal, offering a dynamic blend of Review-type articles, Highlights, Communications, and Research Articles on a weekly basis, making it unique in the field.