{"title":"Proportions of Mn and Co in BMxC1-x perovskite altered catalytic performance and ecological safety: Insights into algal metabolic response","authors":"Saibo Liu, Xiaodie Zheng, Tao Kong, Yuxian Wang, Guorong Xin, Xiaoguang Duan, Xiaochen Huang","doi":"10.1016/j.jhazmat.2025.137338","DOIUrl":null,"url":null,"abstract":"Perovskites have been widely used in catalysis because of high activity and low cost. Although the catalytic efficiency of perovskites could be strengthened by adjusting the type and proportion of B-site element, the relationship between their performance and ecological risks is unknown. In this study, three Ba-based perovskites with different proportions of Mn and Co at the B-site (BMCs) were synthesized to compare their catalytic efficiency in activation of peroxymonosulfate (PMS). Moreover, their toxicity to freshwater alga <em>Chlorella vulgaris</em> were evaluated. Increasing the B-site Mn/Co ratio populated the amount of the oxygen vacancies (OVs). BMC with the B-site Mn/Co ratio of 1: 1 exhibited the highest catalytic activity in PMS activation for degradation of aqueous 4-chlorophenol. All three perovskites induced the algal growth inhibition in a dose-dependent manner, followed by the order of BM<sub>0.8</sub>C<sub>0.2</sub> > BM<sub>0.2</sub>C<sub>0.8</sub> ≈ BM<sub>0.5</sub>C<sub>0.5</sub>. Microscopy observations collectively found that the B-site regulated perovskites could destroy cell structures. Notably, metabolite homeostasis in algal cells was disturbed by three BMCs, uridine monophosphate and pentacosanoic acid could be potential biomarkers for evaluating their ecotoxicity. The highest catalytic activity with relatively low toxicity of BMCs with the Mn/Co ratio of 1:1 at B-site, probably because of Mn release rather than OVs. This research expanded our perception of the ecotoxicity of new-type perovskites in aquatic environment.","PeriodicalId":361,"journal":{"name":"Journal of Hazardous Materials","volume":"9 1","pages":""},"PeriodicalIF":12.2000,"publicationDate":"2025-01-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Hazardous Materials","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1016/j.jhazmat.2025.137338","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
引用次数: 0
Abstract
Perovskites have been widely used in catalysis because of high activity and low cost. Although the catalytic efficiency of perovskites could be strengthened by adjusting the type and proportion of B-site element, the relationship between their performance and ecological risks is unknown. In this study, three Ba-based perovskites with different proportions of Mn and Co at the B-site (BMCs) were synthesized to compare their catalytic efficiency in activation of peroxymonosulfate (PMS). Moreover, their toxicity to freshwater alga Chlorella vulgaris were evaluated. Increasing the B-site Mn/Co ratio populated the amount of the oxygen vacancies (OVs). BMC with the B-site Mn/Co ratio of 1: 1 exhibited the highest catalytic activity in PMS activation for degradation of aqueous 4-chlorophenol. All three perovskites induced the algal growth inhibition in a dose-dependent manner, followed by the order of BM0.8C0.2 > BM0.2C0.8 ≈ BM0.5C0.5. Microscopy observations collectively found that the B-site regulated perovskites could destroy cell structures. Notably, metabolite homeostasis in algal cells was disturbed by three BMCs, uridine monophosphate and pentacosanoic acid could be potential biomarkers for evaluating their ecotoxicity. The highest catalytic activity with relatively low toxicity of BMCs with the Mn/Co ratio of 1:1 at B-site, probably because of Mn release rather than OVs. This research expanded our perception of the ecotoxicity of new-type perovskites in aquatic environment.
期刊介绍:
The Journal of Hazardous Materials serves as a global platform for promoting cutting-edge research in the field of Environmental Science and Engineering. Our publication features a wide range of articles, including full-length research papers, review articles, and perspectives, with the aim of enhancing our understanding of the dangers and risks associated with various materials concerning public health and the environment. It is important to note that the term "environmental contaminants" refers specifically to substances that pose hazardous effects through contamination, while excluding those that do not have such impacts on the environment or human health. Moreover, we emphasize the distinction between wastes and hazardous materials in order to provide further clarity on the scope of the journal. We have a keen interest in exploring specific compounds and microbial agents that have adverse effects on the environment.