Why Sb2Se3/CdS Interface Produces Higher Power Conversion Efficiency

IF 4.8 2区 化学 Q2 CHEMISTRY, PHYSICAL The Journal of Physical Chemistry Letters Pub Date : 2025-01-23 DOI:10.1021/acs.jpclett.4c03330
Jingting Shu, Yaqian Li, Bingxin Yang, Bohao Feng, Wenxin Dong, Ying Wang, Baolai Liang, Weili Fan, Xiaohui Zhao, Zhiqiang Li, Wei Dang
{"title":"Why Sb2Se3/CdS Interface Produces Higher Power Conversion Efficiency","authors":"Jingting Shu, Yaqian Li, Bingxin Yang, Bohao Feng, Wenxin Dong, Ying Wang, Baolai Liang, Weili Fan, Xiaohui Zhao, Zhiqiang Li, Wei Dang","doi":"10.1021/acs.jpclett.4c03330","DOIUrl":null,"url":null,"abstract":"Developing the Cd-free electron transport layer (ETL) is a crucial subject in the field of antimony selenide (Sb<sub>2</sub>Se<sub>3</sub>) solar cells. At present, the power conversion efficiency (PCE) of the Cd-free Sb<sub>2</sub>Se<sub>3</sub> solar cell is still substantially lower than that of CdS-based devices. It is significant to reveal the electron transfer features in Sb<sub>2</sub>Se<sub>3</sub>/CdS heterojunction and Sb<sub>2</sub>Se<sub>3</sub>/Cd-free ETL heterojunction for development of a Cd-free Sb<sub>2</sub>Se<sub>3</sub> solar cell with high PCE. In this work, Sb<sub>2</sub>Se<sub>3</sub>/Cd heterojunction and Sb<sub>2</sub>Se<sub>3</sub>/ZnO heterojunction were systematically investigated from the view of PCE, trap state passivation, interface charge separation, and carrier kinetics on a picosecond time scale. Experimental results demonstrate that electron transfer at Sb<sub>2</sub>Se<sub>3</sub>/CdS and Sb<sub>2</sub>Se<sub>3</sub>/ZnO occurs on a comparable time scale with time constants of 1.38–3.42 and 1.91–3.17 ps, respectively. The PCE gap between the Cd-based device and the Cd-free device is mainly determined by the passivation effect. The excellent passivation effect of CdS on Sb<sub>2</sub>Se<sub>3</sub> ensure the high electron transfer efficiency at Sb<sub>2</sub>Se<sub>3</sub>/CdS heterojunction. Our results reveal the key challenges in improving the performance of Cd-free Sb<sub>2</sub>Se<sub>3</sub> solar cells.","PeriodicalId":62,"journal":{"name":"The Journal of Physical Chemistry Letters","volume":"38 1","pages":""},"PeriodicalIF":4.8000,"publicationDate":"2025-01-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Journal of Physical Chemistry Letters","FirstCategoryId":"1","ListUrlMain":"https://doi.org/10.1021/acs.jpclett.4c03330","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Developing the Cd-free electron transport layer (ETL) is a crucial subject in the field of antimony selenide (Sb2Se3) solar cells. At present, the power conversion efficiency (PCE) of the Cd-free Sb2Se3 solar cell is still substantially lower than that of CdS-based devices. It is significant to reveal the electron transfer features in Sb2Se3/CdS heterojunction and Sb2Se3/Cd-free ETL heterojunction for development of a Cd-free Sb2Se3 solar cell with high PCE. In this work, Sb2Se3/Cd heterojunction and Sb2Se3/ZnO heterojunction were systematically investigated from the view of PCE, trap state passivation, interface charge separation, and carrier kinetics on a picosecond time scale. Experimental results demonstrate that electron transfer at Sb2Se3/CdS and Sb2Se3/ZnO occurs on a comparable time scale with time constants of 1.38–3.42 and 1.91–3.17 ps, respectively. The PCE gap between the Cd-based device and the Cd-free device is mainly determined by the passivation effect. The excellent passivation effect of CdS on Sb2Se3 ensure the high electron transfer efficiency at Sb2Se3/CdS heterojunction. Our results reveal the key challenges in improving the performance of Cd-free Sb2Se3 solar cells.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Sb2Se3/CdS接口为何能产生更高的功率转换效率
开发无镉电子传输层(ETL)是硒化锑(Sb2Se3)太阳能电池领域的一个重要课题。目前,无cd的Sb2Se3太阳能电池的功率转换效率(PCE)仍然大大低于基于cd的器件。揭示Sb2Se3/CdS异质结和Sb2Se3/无Cd ETL异质结的电子转移特征对于开发具有高PCE的无Cd Sb2Se3太阳能电池具有重要意义。本文从PCE、阱态钝化、界面电荷分离和皮秒时间尺度载流子动力学的角度系统地研究了Sb2Se3/Cd异质结和Sb2Se3/ZnO异质结。实验结果表明,Sb2Se3/CdS和Sb2Se3/ZnO的电子转移发生在相当的时间尺度上,时间常数分别为1.38 ~ 3.42和1.91 ~ 3.17 ps。有cd器件与无cd器件之间的PCE差距主要由钝化效应决定。CdS对Sb2Se3良好的钝化效果保证了Sb2Se3/CdS异质结处的高电子转移效率。我们的研究结果揭示了提高无镉Sb2Se3太阳能电池性能的关键挑战。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
The Journal of Physical Chemistry Letters
The Journal of Physical Chemistry Letters CHEMISTRY, PHYSICAL-NANOSCIENCE & NANOTECHNOLOGY
CiteScore
9.60
自引率
7.00%
发文量
1519
审稿时长
1.6 months
期刊介绍: The Journal of Physical Chemistry (JPC) Letters is devoted to reporting new and original experimental and theoretical basic research of interest to physical chemists, biophysical chemists, chemical physicists, physicists, material scientists, and engineers. An important criterion for acceptance is that the paper reports a significant scientific advance and/or physical insight such that rapid publication is essential. Two issues of JPC Letters are published each month.
期刊最新文献
Nanosecond Molecular Motion in pHP1α Liquid–Liquid Phase Separation Captured by Solid-State NMR Impact of Subsurface Oxygen on CO2 Charging Energy Changes in Cu Surfaces The Best of Both Worlds: ΔDFT Describes Multiresonance TADF Emitters with Wave-Function Accuracy at Density-Functional Cost Harnessing Hole Sites in 2D Monolayer C60 for Metal Cluster Anchoring Why Sb2Se3/CdS Interface Produces Higher Power Conversion Efficiency
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1