Erbium: key to simultaneously achieving superior temperature-stability and high magnetic properties in 2 : 17-type permanent magnets†

IF 10.7 2区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY Materials Horizons Pub Date : 2025-01-18 DOI:10.1039/D4MH01765J
Zan Long, Chaoyue Zhang, Yuqing Li, Baoguo Zhang, Mengying Bian, Chong Ling, Youning Kang, Hongguo Zhang, Qiong Wu and Ming Yue
{"title":"Erbium: key to simultaneously achieving superior temperature-stability and high magnetic properties in 2 : 17-type permanent magnets†","authors":"Zan Long, Chaoyue Zhang, Yuqing Li, Baoguo Zhang, Mengying Bian, Chong Ling, Youning Kang, Hongguo Zhang, Qiong Wu and Ming Yue","doi":"10.1039/D4MH01765J","DOIUrl":null,"url":null,"abstract":"<p >To address the demands of rapidly advancing precision instruments requiring higher efficiency and miniaturization, permanent magnets must exhibit exceptional energy density, temperature stability, high magnetic energy product [(<em>BH</em>)<small><sub>max</sub></small>], and adequate coercivity (<em>H</em><small><sub>cj</sub></small>). Herein, we design rare earth Er-based magnets (2 : 17-type Er-magnets) with a composition of (Er, Sm)(Co, Fe, Cu, Zr)<small><sub>7.6</sub></small>. Erbium-based compounds (Er<small><sub>2</sub></small>Co<small><sub>17</sub></small>) offer a unique combination of temperature compensation and high saturation magnetization compared to other heavy rare earth elements, resulting in 2 : 17-type Er-magnets with superior temperature stability in <em>B</em><small><sub>r</sub></small> and (<em>BH</em>)<small><sub>max</sub></small>. Partially substituting Sm reduces the energy barrier for the 2 : 17H-to-2 : 17R phase transition, promoting the development of a complete cellular structure and achieving enhanced coercivity. Notably, the optimal performance is obtained with Er constituting 60% of the total rare earth content, delivering a near-zero temperature-coefficient for <em>B</em><small><sub>r</sub></small> and (<em>BH</em>)<small><sub>max</sub></small> within 20–150 °C while maintaining <em>B</em><small><sub>r</sub></small> at 8.92 kG, <em>H</em><small><sub>cj</sub></small> at 29.83 kOe, and (<em>BH</em>)<small><sub>max</sub></small> at 18.5 MGOe. These 2 : 17-type Er-magnets provide valuable insights for developing permanent magnets with exceptional comprehensive properties.</p>","PeriodicalId":87,"journal":{"name":"Materials Horizons","volume":" 9","pages":" 2999-3010"},"PeriodicalIF":10.7000,"publicationDate":"2025-01-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Horizons","FirstCategoryId":"88","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2025/mh/d4mh01765j","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

To address the demands of rapidly advancing precision instruments requiring higher efficiency and miniaturization, permanent magnets must exhibit exceptional energy density, temperature stability, high magnetic energy product [(BH)max], and adequate coercivity (Hcj). Herein, we design rare earth Er-based magnets (2 : 17-type Er-magnets) with a composition of (Er, Sm)(Co, Fe, Cu, Zr)7.6. Erbium-based compounds (Er2Co17) offer a unique combination of temperature compensation and high saturation magnetization compared to other heavy rare earth elements, resulting in 2 : 17-type Er-magnets with superior temperature stability in Br and (BH)max. Partially substituting Sm reduces the energy barrier for the 2 : 17H-to-2 : 17R phase transition, promoting the development of a complete cellular structure and achieving enhanced coercivity. Notably, the optimal performance is obtained with Er constituting 60% of the total rare earth content, delivering a near-zero temperature-coefficient for Br and (BH)max within 20–150 °C while maintaining Br at 8.92 kG, Hcj at 29.83 kOe, and (BH)max at 18.5 MGOe. These 2 : 17-type Er-magnets provide valuable insights for developing permanent magnets with exceptional comprehensive properties.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
铒:在2:17型永磁体中同时实现卓越的温度稳定性和高磁性能的关键。
为了满足快速发展的精密仪器对更高效率和小型化的要求,永磁体必须具有卓越的能量密度,温度稳定性,高磁能积[(BH)max]和足够的矫顽力(Hcj)。本文设计了(Er, Sm)(Co, Fe, Cu, Zr)7.6的稀土Er基磁体(2:17型Er磁体)。与其他重稀土元素相比,铒基化合物(Er2Co17)提供了独特的温度补偿和高饱和磁化的组合,导致2:17型er磁体在Br和(BH)max中具有优越的温度稳定性。部分取代Sm降低了2:17 h到2:17 r相变的能垒,促进了完整胞状结构的发展,实现了矫顽力的增强。值得注意的是,当Er占总稀土含量的60%时,获得了最佳性能,在20-150°C范围内,Br和(BH)max的温度系数接近于零,同时Br保持在8.92 kG, Hcj保持在29.83 kOe, (BH)max保持在18.5 MGOe。这些2:17型er磁体为开发具有特殊综合性能的永磁体提供了有价值的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Materials Horizons
Materials Horizons CHEMISTRY, MULTIDISCIPLINARY-MATERIALS SCIENCE, MULTIDISCIPLINARY
CiteScore
18.90
自引率
2.30%
发文量
306
审稿时长
1.3 months
期刊介绍: Materials Horizons is a leading journal in materials science that focuses on publishing exceptionally high-quality and innovative research. The journal prioritizes original research that introduces new concepts or ways of thinking, rather than solely reporting technological advancements. However, groundbreaking articles featuring record-breaking material performance may also be published. To be considered for publication, the work must be of significant interest to our community-spanning readership. Starting from 2021, all articles published in Materials Horizons will be indexed in MEDLINE©. The journal publishes various types of articles, including Communications, Reviews, Opinion pieces, Focus articles, and Comments. It serves as a core journal for researchers from academia, government, and industry across all areas of materials research. Materials Horizons is a Transformative Journal and compliant with Plan S. It has an impact factor of 13.3 and is indexed in MEDLINE.
期刊最新文献
High-sensitivity, dual-mode, flexible, electrooxidized cellulose-based electronic skins with compatible mechanical properties and antimicrobial activity for wide-temperature applications. Achieving strength and toughness limits of anisotropic microstructured alumina ceramics through interface engineering. Fluorine-doped 3D honeycomb carbon network for long-duration aqueous zinc-iodine batteries. Generative inverse design for microstructure control in precursors for Li- and Mn-rich layered-oxide cathodes. The carbon cost of materials discovery: Can machine learning really accelerate the discovery of new photovoltaics?
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1