Combining Ionic Groups with Methallyl Dichloride Coupling Delivers New Pathways to Ionic/Non-Ionic Hybrid Detergents.

IF 3 4区 化学 Q2 CHEMISTRY, MULTIDISCIPLINARY ChemPlusChem Pub Date : 2025-01-23 DOI:10.1002/cplu.202400753
Jan-Simon Behnke, Naomi Zink, Carl J M Schoelzel, Inga Beimdick, Leonhard Hagen Urner, Virginia Wycisk
{"title":"Combining Ionic Groups with Methallyl Dichloride Coupling Delivers New Pathways to Ionic/Non-Ionic Hybrid Detergents.","authors":"Jan-Simon Behnke, Naomi Zink, Carl J M Schoelzel, Inga Beimdick, Leonhard Hagen Urner, Virginia Wycisk","doi":"10.1002/cplu.202400753","DOIUrl":null,"url":null,"abstract":"<p><p>Strategies for combining ionic and non-ionic functional groups are important for altering detergent properties and exploring new chemical spaces within the detergentome. Previous synthesis protocols for ionic/non-ionic hybrid detergents require asymmetric detergent precursors with independently addressable hydroxyl groups that can be decorated with charged groups. However, preparation of ionic/non-ionic headgroups can be tedious in terms of required synthesis steps and resource consumption. To address this challenge, here we explore if we can fuse ionic and non-ionic groups directly with methallyl dichloride in the first step of detergent synthesis. While this delivers a simplified synthesis strategy for ionic/non-ionic headgroups, we find functional groups for which the modification of asymmetric detergent precursors is still the only viable option to obtain related ionic/non-ionic hybrid detergents. Because previously established debenzylation conditions limit overall yields for asymmetric detergent precursors, here we explore optimization strategies, including silyl protecting groups, ozonolysis-hydrolysis, and hydrogenolysis. In summary, we establish a new synthesis route to ionic/non-ionic hybrid detergents, deliver an optimized debenzylation protocol and obtain building blocks for bridged detergent architectures. Our findings facilitate the modular synthesis of hybrid detergents and expand the chemical space of detergents.</p>","PeriodicalId":148,"journal":{"name":"ChemPlusChem","volume":" ","pages":"e202400753"},"PeriodicalIF":3.0000,"publicationDate":"2025-01-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ChemPlusChem","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1002/cplu.202400753","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Strategies for combining ionic and non-ionic functional groups are important for altering detergent properties and exploring new chemical spaces within the detergentome. Previous synthesis protocols for ionic/non-ionic hybrid detergents require asymmetric detergent precursors with independently addressable hydroxyl groups that can be decorated with charged groups. However, preparation of ionic/non-ionic headgroups can be tedious in terms of required synthesis steps and resource consumption. To address this challenge, here we explore if we can fuse ionic and non-ionic groups directly with methallyl dichloride in the first step of detergent synthesis. While this delivers a simplified synthesis strategy for ionic/non-ionic headgroups, we find functional groups for which the modification of asymmetric detergent precursors is still the only viable option to obtain related ionic/non-ionic hybrid detergents. Because previously established debenzylation conditions limit overall yields for asymmetric detergent precursors, here we explore optimization strategies, including silyl protecting groups, ozonolysis-hydrolysis, and hydrogenolysis. In summary, we establish a new synthesis route to ionic/non-ionic hybrid detergents, deliver an optimized debenzylation protocol and obtain building blocks for bridged detergent architectures. Our findings facilitate the modular synthesis of hybrid detergents and expand the chemical space of detergents.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
ChemPlusChem
ChemPlusChem CHEMISTRY, MULTIDISCIPLINARY-
CiteScore
5.90
自引率
0.00%
发文量
200
审稿时长
1 months
期刊介绍: ChemPlusChem is a peer-reviewed, general chemistry journal that brings readers the very best in multidisciplinary research centering on chemistry. It is published on behalf of Chemistry Europe, an association of 16 European chemical societies. Fully comprehensive in its scope, ChemPlusChem publishes articles covering new results from at least two different aspects (subfields) of chemistry or one of chemistry and one of another scientific discipline (one chemistry topic plus another one, hence the title ChemPlusChem). All suitable submissions undergo balanced peer review by experts in the field to ensure the highest quality, originality, relevance, significance, and validity.
期刊最新文献
Electrocatalytic Lignin Valorization via Enhanced H₂O₂ Generation Using a MWNCT-Modified Gas Diffusion Electrode. Novel DMAP@Mesoporous Silica Hybrid Heterogeneous Catalysts for the Knoevenagel Condensation: Greener Synthesis through Eco-friendly Solvents. Bulky Ligands for Open Channels: Manganese (II) sql MOFs from Pyridyl-Functionalised [3]Polynorbornanes. Multifluoro-modification Enhancing Catalytic Activity and Thermal Stability of Bis(imino)pyridylcobalt Chlorides for Linear Polyethylene. Stabilization of Verdigris Pigment on Paper: Evaluation of Antioxidants Under Mild Accelerated Degradation Conditions.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1