{"title":"Topological defects induced by air inclusions in ferroelectric nematic liquid crystals with ionic doping.","authors":"Zhongjie Ma, Shengzhu Yi, Miao Jiang, Mingjun Huang, Satoshi Aya, Rui Zhang, Qi-Huo Wei","doi":"10.1039/d4sm01261e","DOIUrl":null,"url":null,"abstract":"<p><p>We report an experimental study on how topological defects induced by cylindrical air inclusions in the ferroelectric nematic liquid crystal RM734 are influenced by ionic doping, including an ionic surfactant and ionic polymer. Our results show that subtle differences in molecular structure can lead to distinct surface alignments and topological defects. The ionic surfactant induces a planar alignment, with two -1/2 line defects adhering to the cylindrical bubble surface. In contrast, the ionic polymer promotes homeotropic alignment, resulting in a -1 polar disclination around the cylindrical bubble. By numerical simulations, we verify that these topological defects are vertical lines with two dimensional polarization fields. These configurations differ from the boojums and hedgehog defects induced by air inclusions in nematic liquid crystals, highlighting the significant role of broken inversion symmetry.</p>","PeriodicalId":103,"journal":{"name":"Soft Matter","volume":" ","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2025-01-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Soft Matter","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1039/d4sm01261e","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
We report an experimental study on how topological defects induced by cylindrical air inclusions in the ferroelectric nematic liquid crystal RM734 are influenced by ionic doping, including an ionic surfactant and ionic polymer. Our results show that subtle differences in molecular structure can lead to distinct surface alignments and topological defects. The ionic surfactant induces a planar alignment, with two -1/2 line defects adhering to the cylindrical bubble surface. In contrast, the ionic polymer promotes homeotropic alignment, resulting in a -1 polar disclination around the cylindrical bubble. By numerical simulations, we verify that these topological defects are vertical lines with two dimensional polarization fields. These configurations differ from the boojums and hedgehog defects induced by air inclusions in nematic liquid crystals, highlighting the significant role of broken inversion symmetry.
期刊介绍:
Soft Matter is an international journal published by the Royal Society of Chemistry using Engineering-Materials Science: A Synthesis as its research focus. It publishes original research articles, review articles, and synthesis articles related to this field, reporting the latest discoveries in the relevant theoretical, practical, and applied disciplines in a timely manner, and aims to promote the rapid exchange of scientific information in this subject area. The journal is an open access journal. The journal is an open access journal and has not been placed on the alert list in the last three years.