Taming the diffusiophoretic convective instability in colloidal suspensions.

IF 2.9 3区 化学 Q3 CHEMISTRY, PHYSICAL Soft Matter Pub Date : 2025-03-06 DOI:10.1039/d4sm01432d
Stefano Castellini, Carmine Anzivino, Carlo Marietti, Marina Carpineti, Alessio Zaccone, Alberto Vailati
{"title":"Taming the diffusiophoretic convective instability in colloidal suspensions.","authors":"Stefano Castellini, Carmine Anzivino, Carlo Marietti, Marina Carpineti, Alessio Zaccone, Alberto Vailati","doi":"10.1039/d4sm01432d","DOIUrl":null,"url":null,"abstract":"<p><p>A suspension of Brownian colloidal particles stabilised against aggregation is expected to be stable against convection when its density decreases monotonically with height. Surprisingly, a recent experimental investigation has shown that when colloidal particles are dispersed uniformly in a solvent with a stabilising stratification of a molecular solute, the system develops a convective instability under generic conditions [Anzivino <i>et al.</i>, <i>J. Phys. Chem. Lett.</i>, 2024, <b>15</b>, 9030]. This instability arises because the solute concentration gradient induces an upward diffusiophoretic motion of the colloidal particles, triggering a diffusiophoretic convective instability (DCI). In this work, we investigate the stability of a colloidal suspension against convection in the presence of a stable density stratification of the sample, under different initial conditions. In particular, we study the condition where both the colloid and the molecular solute are initially localized in the lower half of the sample prior to merging with the upper half made of pure water. This is unlike the previously studied setup where the colloid was initially present also in the upper half, suspended in water. We show that only when the concentration of glycerol exceeds a fairly large threshold value of approximately 0.3 w/w the system develops the convective instability. Hence, this new setup offers the possibility to tame DCI by changing the initial conditions. We model the experimental results by numerically solving the nonlinear double diffusion equations in the presence of a diffusiophoretic coupling to determine the time evolution of the base state of the system. The theoretical analysis allows us to elucidate the physical reason for the existence of the threshold value of the glycerol concentration and to establish that the interactions between the colloidal particles do not play a significant role in the DCI.</p>","PeriodicalId":103,"journal":{"name":"Soft Matter","volume":" ","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2025-03-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Soft Matter","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1039/d4sm01432d","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

A suspension of Brownian colloidal particles stabilised against aggregation is expected to be stable against convection when its density decreases monotonically with height. Surprisingly, a recent experimental investigation has shown that when colloidal particles are dispersed uniformly in a solvent with a stabilising stratification of a molecular solute, the system develops a convective instability under generic conditions [Anzivino et al., J. Phys. Chem. Lett., 2024, 15, 9030]. This instability arises because the solute concentration gradient induces an upward diffusiophoretic motion of the colloidal particles, triggering a diffusiophoretic convective instability (DCI). In this work, we investigate the stability of a colloidal suspension against convection in the presence of a stable density stratification of the sample, under different initial conditions. In particular, we study the condition where both the colloid and the molecular solute are initially localized in the lower half of the sample prior to merging with the upper half made of pure water. This is unlike the previously studied setup where the colloid was initially present also in the upper half, suspended in water. We show that only when the concentration of glycerol exceeds a fairly large threshold value of approximately 0.3 w/w the system develops the convective instability. Hence, this new setup offers the possibility to tame DCI by changing the initial conditions. We model the experimental results by numerically solving the nonlinear double diffusion equations in the presence of a diffusiophoretic coupling to determine the time evolution of the base state of the system. The theoretical analysis allows us to elucidate the physical reason for the existence of the threshold value of the glycerol concentration and to establish that the interactions between the colloidal particles do not play a significant role in the DCI.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Soft Matter
Soft Matter 工程技术-材料科学:综合
CiteScore
6.00
自引率
5.90%
发文量
891
审稿时长
1.9 months
期刊介绍: Soft Matter is an international journal published by the Royal Society of Chemistry using Engineering-Materials Science: A Synthesis as its research focus. It publishes original research articles, review articles, and synthesis articles related to this field, reporting the latest discoveries in the relevant theoretical, practical, and applied disciplines in a timely manner, and aims to promote the rapid exchange of scientific information in this subject area. The journal is an open access journal. The journal is an open access journal and has not been placed on the alert list in the last three years.
期刊最新文献
Taming the diffusiophoretic convective instability in colloidal suspensions. Adhesion study at the interface of a PDMS-elastomer and borosilicate glass-slide: effect of modulus and thickness of the elastomer. Eyring theory for plasticity in amorphous polymers violates Curie's principle. Fabrication of COC micromodels with wettability heterogeneities: method and influence on fluid transport. Back cover
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1