R Novra Gabriela, Heryanto Heryanto, Dahlang Tahir
{"title":"Nanocomposite TiO<sub>2</sub>/ZnO/chitosan by method sol-gel for self-cleaning application.","authors":"R Novra Gabriela, Heryanto Heryanto, Dahlang Tahir","doi":"10.1016/j.ijbiomac.2025.140076","DOIUrl":null,"url":null,"abstract":"<p><p>TiO<sub>2</sub>/ZnO/Chitosan coated cotton fabric as a self-cleaning, which has been synthesized by various concentrations of TiO<sub>2</sub>: 0.5 g, 1 g, and 2 g through the sol-gel method at pH 9. The self-cleaning test was conducted on TiO<sub>2</sub>/ZnO/Chitosan-coated cotton fabric samples by irradiating for 15 h using UVA-UVB lamps with clothing stain dye. TiO<sub>2</sub>/ZnO/Chitosan composite's structural properties were analyzed from X-ray diffraction (XRD) spectra, chemical bonding by Fourier Transform Infrared (FTIR), and bandgap by quantitative analysis from UV-visible spectroscopy. The XRD diffraction peaks showed a slight shift to the right, except for the sample with the highest TiO<sub>2</sub> concentration, which showed a more significant shift. FTIR spectra showed the presence of Ti-O-Ti bonds at wavenumbers 500 cm<sup>-1</sup> - 700 cm<sup>-1</sup>, which identified the presence of TiO<sub>2</sub>, and at wavenumber 3485 cm<sup>-1</sup>, which was used for stretching-OH and -NH<sub>2</sub> of chitosan. The band gaps were 5.64 eV, 5.63 eV, and 5.58 eV for TiO<sub>2</sub>: 0.5 g, 1 g, and 2 g, respectively. The self-cleaning test showed that the best results were in the TiO2 sample with a concentration of 2 g at pH 9, where the dye successfully disappeared after exposure to UVA-UVB lamps for 15 h of irradiation.</p>","PeriodicalId":333,"journal":{"name":"International Journal of Biological Macromolecules","volume":" ","pages":"140076"},"PeriodicalIF":7.7000,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Biological Macromolecules","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1016/j.ijbiomac.2025.140076","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/20 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
TiO2/ZnO/Chitosan coated cotton fabric as a self-cleaning, which has been synthesized by various concentrations of TiO2: 0.5 g, 1 g, and 2 g through the sol-gel method at pH 9. The self-cleaning test was conducted on TiO2/ZnO/Chitosan-coated cotton fabric samples by irradiating for 15 h using UVA-UVB lamps with clothing stain dye. TiO2/ZnO/Chitosan composite's structural properties were analyzed from X-ray diffraction (XRD) spectra, chemical bonding by Fourier Transform Infrared (FTIR), and bandgap by quantitative analysis from UV-visible spectroscopy. The XRD diffraction peaks showed a slight shift to the right, except for the sample with the highest TiO2 concentration, which showed a more significant shift. FTIR spectra showed the presence of Ti-O-Ti bonds at wavenumbers 500 cm-1 - 700 cm-1, which identified the presence of TiO2, and at wavenumber 3485 cm-1, which was used for stretching-OH and -NH2 of chitosan. The band gaps were 5.64 eV, 5.63 eV, and 5.58 eV for TiO2: 0.5 g, 1 g, and 2 g, respectively. The self-cleaning test showed that the best results were in the TiO2 sample with a concentration of 2 g at pH 9, where the dye successfully disappeared after exposure to UVA-UVB lamps for 15 h of irradiation.
期刊介绍:
The International Journal of Biological Macromolecules is a well-established international journal dedicated to research on the chemical and biological aspects of natural macromolecules. Focusing on proteins, macromolecular carbohydrates, glycoproteins, proteoglycans, lignins, biological poly-acids, and nucleic acids, the journal presents the latest findings in molecular structure, properties, biological activities, interactions, modifications, and functional properties. Papers must offer new and novel insights, encompassing related model systems, structural conformational studies, theoretical developments, and analytical techniques. Each paper is required to primarily focus on at least one named biological macromolecule, reflected in the title, abstract, and text.