Amel Elbasyouni, Dhamodharan Prabhu, Emmanuel Oluwatofunmi Akindoyin, Victor Gbolahan Adebiyi, Blessing Misturat Aremu, Cornelius Toluwase Ilori, Favour Inijesunimi Olagookun, Akingbolabo Daniel Ogunlakin, Enitan Omobolanle Adesanya
{"title":"In silico-based investigation of the molecular mechanism of Artocarpus communis seed hexane fraction against metabolic syndrome","authors":"Amel Elbasyouni, Dhamodharan Prabhu, Emmanuel Oluwatofunmi Akindoyin, Victor Gbolahan Adebiyi, Blessing Misturat Aremu, Cornelius Toluwase Ilori, Favour Inijesunimi Olagookun, Akingbolabo Daniel Ogunlakin, Enitan Omobolanle Adesanya","doi":"10.1007/s00894-024-06274-8","DOIUrl":null,"url":null,"abstract":"<div><h3>Context</h3><p>The medications for metabolic syndromes are very minimal and the available are not effective and show adverse effects. There is a huge need for the development of effective and safe drugs to battle metabolic syndromes. In this context, our study aimed to decipher the key molecules from <i>Artocarpus communis</i> seed hexane fraction and their possible mechanism of action against metabolic syndrome. Network pharmacology and hub gene analysis revealed that STAT3 displayed the highest number of interactions with 56 genes compared to its counterparts HSP90AA1 (51 interactions) and EP300 (42 interactions). The molecular docking analysis revealed a suitable phytochemical with a higher binding affinity towards the three target genes (STAT3, HSP90AA1, and EP300), which were taken further for the molecular dynamic simulations. Overall, the simulation results depict that all the phytochemicals were stably bound within the cavity of the respective target proteins. Therefore, <i>Artocarpus communis</i> seed hexane fraction can potentially alleviate metabolic syndrome in humans.</p><h3>Methods</h3><p>Solvent-based extraction was performed in this study to extract the phytochemicals in <i>Artocarpus communis</i> seed powder. The hexane fraction was subjected to GCMS analysis to identify the constituents. ADMETlab 3.0 was used in ADME predictions. Gene databases (GeneCards, Pharos, NCBI-gene, and DisGe NET) were used to identify the genes for the study. STRING, DAVID, and KEGG pathways were utilized in this study. PubChem and Protein Databank were used to retrieve the structures of phytochemicals and protein structures. Schrodinger Suite was used for the molecular docking and Desmond 2021–4 was used to simulate the ligand-bound complexes.</p></div>","PeriodicalId":651,"journal":{"name":"Journal of Molecular Modeling","volume":"31 2","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2025-01-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Molecular Modeling","FirstCategoryId":"92","ListUrlMain":"https://link.springer.com/article/10.1007/s00894-024-06274-8","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Context
The medications for metabolic syndromes are very minimal and the available are not effective and show adverse effects. There is a huge need for the development of effective and safe drugs to battle metabolic syndromes. In this context, our study aimed to decipher the key molecules from Artocarpus communis seed hexane fraction and their possible mechanism of action against metabolic syndrome. Network pharmacology and hub gene analysis revealed that STAT3 displayed the highest number of interactions with 56 genes compared to its counterparts HSP90AA1 (51 interactions) and EP300 (42 interactions). The molecular docking analysis revealed a suitable phytochemical with a higher binding affinity towards the three target genes (STAT3, HSP90AA1, and EP300), which were taken further for the molecular dynamic simulations. Overall, the simulation results depict that all the phytochemicals were stably bound within the cavity of the respective target proteins. Therefore, Artocarpus communis seed hexane fraction can potentially alleviate metabolic syndrome in humans.
Methods
Solvent-based extraction was performed in this study to extract the phytochemicals in Artocarpus communis seed powder. The hexane fraction was subjected to GCMS analysis to identify the constituents. ADMETlab 3.0 was used in ADME predictions. Gene databases (GeneCards, Pharos, NCBI-gene, and DisGe NET) were used to identify the genes for the study. STRING, DAVID, and KEGG pathways were utilized in this study. PubChem and Protein Databank were used to retrieve the structures of phytochemicals and protein structures. Schrodinger Suite was used for the molecular docking and Desmond 2021–4 was used to simulate the ligand-bound complexes.
期刊介绍:
The Journal of Molecular Modeling focuses on "hardcore" modeling, publishing high-quality research and reports. Founded in 1995 as a purely electronic journal, it has adapted its format to include a full-color print edition, and adjusted its aims and scope fit the fast-changing field of molecular modeling, with a particular focus on three-dimensional modeling.
Today, the journal covers all aspects of molecular modeling including life science modeling; materials modeling; new methods; and computational chemistry.
Topics include computer-aided molecular design; rational drug design, de novo ligand design, receptor modeling and docking; cheminformatics, data analysis, visualization and mining; computational medicinal chemistry; homology modeling; simulation of peptides, DNA and other biopolymers; quantitative structure-activity relationships (QSAR) and ADME-modeling; modeling of biological reaction mechanisms; and combined experimental and computational studies in which calculations play a major role.