Ahmed Mobeen, Sweta Joshi, Firdaus Fatima, Anasuya Bhargav, Yusra Arif, Mohammed Faruq, Srinivasan Ramachandran
{"title":"NF-κB signaling is the major inflammatory pathway for inducing insulin resistance.","authors":"Ahmed Mobeen, Sweta Joshi, Firdaus Fatima, Anasuya Bhargav, Yusra Arif, Mohammed Faruq, Srinivasan Ramachandran","doi":"10.1007/s13205-024-04202-4","DOIUrl":null,"url":null,"abstract":"<p><p>Insulin resistance is major factor in the development of metabolic syndrome and type 2 diabetes (T2D). We extracted 430 genes from literature associated with both insulin resistance and inflammation. The highly significant pathways were Toll-like receptor signaling, PI3K-Akt signaling, cytokine-cytokine receptor interaction, pathways in cancer, TNF signaling, and NF-kappa B signaling. Among the 297 common genes in all datasets of various T2D patients' tissues including blood, muscle, liver, pancreas, and adipose tissues, 71% and 60% of these genes were differentially expressed in pancreas (GSE25724) and liver (GSE15653), respectively. A total of 169 genes contain highly conserved motifs for various transcription factors involved in immune response, thereby suggesting coordinated expression. Through co-expression analysis, we obtained three modules. The respective modules had 78, 158, and 55 genes, and <i>TRAF2</i>, <i>HMGA1</i>, and <i>RGS5</i> as hub genes. Further, we used the BioNSi pathways simulation tool and identified the following five KEGG pathways perturbed in four or more tissues, namely Toll-like receptor signaling pathway, RIG-1-like receptor signaling pathway, pathways in cancer, NF-kappa B signaling pathway, and insulin resistance pathway. The genes <i>NFKBIA</i> and <i>IKBKB</i> are common to all these five pathways. In addition, using the NF-κB computational activation model, we identified that the reversal of NF-κB constitutive activation through overexpression of NFKB1 (P50 homodimer), PPARG, PIAS3 could reduce insulin resistance by almost half of its original value. To conclude, co-expression studies, gene expression network simulation, and NF-κB computational modeling substantiate the causal role of NF-κB pathway in insulin resistance. These results taken together with other published evidence suggests that the TNF-TRAF2-IKBKB-NF-κB axis could be explored as a potential target in combination with available metabolic targets in the management of insulin resistance.</p><p><strong>Supplementary information: </strong>The online version contains supplementary material available at 10.1007/s13205-024-04202-4.</p>","PeriodicalId":7067,"journal":{"name":"3 Biotech","volume":"15 2","pages":"47"},"PeriodicalIF":2.6000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11747027/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"3 Biotech","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s13205-024-04202-4","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/20 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Insulin resistance is major factor in the development of metabolic syndrome and type 2 diabetes (T2D). We extracted 430 genes from literature associated with both insulin resistance and inflammation. The highly significant pathways were Toll-like receptor signaling, PI3K-Akt signaling, cytokine-cytokine receptor interaction, pathways in cancer, TNF signaling, and NF-kappa B signaling. Among the 297 common genes in all datasets of various T2D patients' tissues including blood, muscle, liver, pancreas, and adipose tissues, 71% and 60% of these genes were differentially expressed in pancreas (GSE25724) and liver (GSE15653), respectively. A total of 169 genes contain highly conserved motifs for various transcription factors involved in immune response, thereby suggesting coordinated expression. Through co-expression analysis, we obtained three modules. The respective modules had 78, 158, and 55 genes, and TRAF2, HMGA1, and RGS5 as hub genes. Further, we used the BioNSi pathways simulation tool and identified the following five KEGG pathways perturbed in four or more tissues, namely Toll-like receptor signaling pathway, RIG-1-like receptor signaling pathway, pathways in cancer, NF-kappa B signaling pathway, and insulin resistance pathway. The genes NFKBIA and IKBKB are common to all these five pathways. In addition, using the NF-κB computational activation model, we identified that the reversal of NF-κB constitutive activation through overexpression of NFKB1 (P50 homodimer), PPARG, PIAS3 could reduce insulin resistance by almost half of its original value. To conclude, co-expression studies, gene expression network simulation, and NF-κB computational modeling substantiate the causal role of NF-κB pathway in insulin resistance. These results taken together with other published evidence suggests that the TNF-TRAF2-IKBKB-NF-κB axis could be explored as a potential target in combination with available metabolic targets in the management of insulin resistance.
Supplementary information: The online version contains supplementary material available at 10.1007/s13205-024-04202-4.
3 BiotechAgricultural and Biological Sciences-Agricultural and Biological Sciences (miscellaneous)
CiteScore
6.00
自引率
0.00%
发文量
314
期刊介绍:
3 Biotech publishes the results of the latest research related to the study and application of biotechnology to:
- Medicine and Biomedical Sciences
- Agriculture
- The Environment
The focus on these three technology sectors recognizes that complete Biotechnology applications often require a combination of techniques. 3 Biotech not only presents the latest developments in biotechnology but also addresses the problems and benefits of integrating a variety of techniques for a particular application. 3 Biotech will appeal to scientists and engineers in both academia and industry focused on the safe and efficient application of Biotechnology to Medicine, Agriculture and the Environment.