{"title":"Mechanistic investigation of impact of malic acid, ultrasound and dual treatment on starch digestibility of cooked whole rice grains","authors":"Xinyi Chen , Xiaowei Zhang , Enpeng Li , Cheng Li","doi":"10.1016/j.carbpol.2025.123230","DOIUrl":null,"url":null,"abstract":"<div><div>Physical, chemical, and dual modifications can all significantly affect the digestibility of isolated rice granules, while their effects on the starch digestibility of whole cooked rice grains remain elusive. Therefore, the impact of malic acid, ultrasound, and ultrasound + malic acid dual treatment on the starch digestibility of cooked rice grains with different starch molecular structures was investigated in this study. Ultrasound mainly caused cavitation on the surface of rice grains, promoting the leaching of materials (> 11 %) and amylose during cooking. This led to a faster retrogradation rate, smaller pores, and a lower maximum starch digestion extent. In contrast, malic acid caused a faster digestion rate due to the significant degradation of starch molecules, although its moderate esterification smoothed the cooked rice grain surface and slightly reduced the maximum starch digestion extent. Compared to malic acid treatment, the dual treatment showed a much higher degree of esterification, which may thus contribute to its significantly lower maximum starch digestion extent (up to 21 %). Collectively, these findings suggest that both ultrasound and dual treatment can be effective strategies for producing cooked rice grains with slower starch digestibility, with implications for improving the public health.</div></div>","PeriodicalId":261,"journal":{"name":"Carbohydrate Polymers","volume":"352 ","pages":"Article 123230"},"PeriodicalIF":10.7000,"publicationDate":"2025-01-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Carbohydrate Polymers","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0144861725000116","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
Physical, chemical, and dual modifications can all significantly affect the digestibility of isolated rice granules, while their effects on the starch digestibility of whole cooked rice grains remain elusive. Therefore, the impact of malic acid, ultrasound, and ultrasound + malic acid dual treatment on the starch digestibility of cooked rice grains with different starch molecular structures was investigated in this study. Ultrasound mainly caused cavitation on the surface of rice grains, promoting the leaching of materials (> 11 %) and amylose during cooking. This led to a faster retrogradation rate, smaller pores, and a lower maximum starch digestion extent. In contrast, malic acid caused a faster digestion rate due to the significant degradation of starch molecules, although its moderate esterification smoothed the cooked rice grain surface and slightly reduced the maximum starch digestion extent. Compared to malic acid treatment, the dual treatment showed a much higher degree of esterification, which may thus contribute to its significantly lower maximum starch digestion extent (up to 21 %). Collectively, these findings suggest that both ultrasound and dual treatment can be effective strategies for producing cooked rice grains with slower starch digestibility, with implications for improving the public health.
期刊介绍:
Carbohydrate Polymers stands as a prominent journal in the glycoscience field, dedicated to exploring and harnessing the potential of polysaccharides with applications spanning bioenergy, bioplastics, biomaterials, biorefining, chemistry, drug delivery, food, health, nanotechnology, packaging, paper, pharmaceuticals, medicine, oil recovery, textiles, tissue engineering, wood, and various aspects of glycoscience.
The journal emphasizes the central role of well-characterized carbohydrate polymers, highlighting their significance as the primary focus rather than a peripheral topic. Each paper must prominently feature at least one named carbohydrate polymer, evident in both citation and title, with a commitment to innovative research that advances scientific knowledge.