Bioactive arabinoxylan oligomers via colonic fermentation and enzymatic catalysis: Evidence of interaction with toll-like receptors from in vitro, in silico and functional analysis

IF 10.7 1区 化学 Q1 CHEMISTRY, APPLIED Carbohydrate Polymers Pub Date : 2024-12-27 DOI:10.1016/j.carbpol.2024.123175
Caroline de A. Guerreiro , Leandro A.D. Andrade , Cynthia Fernández-Lainez , Layanne N. Fraga , Gabriel López-Velázquez , Tatiana M. Marques , Samira B.R. Prado , Robert J. Brummer , João Roberto O. Nascimento , Victor Castro-Alves
{"title":"Bioactive arabinoxylan oligomers via colonic fermentation and enzymatic catalysis: Evidence of interaction with toll-like receptors from in vitro, in silico and functional analysis","authors":"Caroline de A. Guerreiro ,&nbsp;Leandro A.D. Andrade ,&nbsp;Cynthia Fernández-Lainez ,&nbsp;Layanne N. Fraga ,&nbsp;Gabriel López-Velázquez ,&nbsp;Tatiana M. Marques ,&nbsp;Samira B.R. Prado ,&nbsp;Robert J. Brummer ,&nbsp;João Roberto O. Nascimento ,&nbsp;Victor Castro-Alves","doi":"10.1016/j.carbpol.2024.123175","DOIUrl":null,"url":null,"abstract":"<div><div>Dietary fibers (DF) from plant-based foods promote health benefits through their physicochemical properties and fermentation by the gut microbiota, often studied in relation to changes in gut microbiota profile and production of gut microbiota-derived metabolites. Here, we characterized structural motifs (<em>i.e.</em>, oligomers) produced during DF breakdown upon colonic fermentation and explored their interaction with toll-like receptors (TLRs) present on the surface of human intestinal and immune system cells. Wheat arabinoxylan (WAX) was subjected to <em>in vitro</em> colonic fermentation, with its structural motifs identified and tracked throughout the fermentation process. Using carbohydrate-active enzymes, six well-defined fractions of arabinoxylans and linear xylans identified during colonic fermentation were produced and tested for interaction with tool-like receptors (TLR)2 and TLR4 <em>via</em> reporter cell assay. The results showed structure-dependent effects, with TLR2 inhibition and TLR4 activation varying based on the degree of polymerization and branching. Molecular docking confirmed that minor structural changes in oligomers structure significantly influenced these interactions. The study supports the hypothesis that oligomers and polysaccharides affect cell receptors through complex, multi-receptor interactions, and highlights the potential for enzymatic tailoring of DF to create functional ingredients with targeted effects on human health.</div></div>","PeriodicalId":261,"journal":{"name":"Carbohydrate Polymers","volume":"352 ","pages":"Article 123175"},"PeriodicalIF":10.7000,"publicationDate":"2024-12-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Carbohydrate Polymers","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0144861724014012","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

Dietary fibers (DF) from plant-based foods promote health benefits through their physicochemical properties and fermentation by the gut microbiota, often studied in relation to changes in gut microbiota profile and production of gut microbiota-derived metabolites. Here, we characterized structural motifs (i.e., oligomers) produced during DF breakdown upon colonic fermentation and explored their interaction with toll-like receptors (TLRs) present on the surface of human intestinal and immune system cells. Wheat arabinoxylan (WAX) was subjected to in vitro colonic fermentation, with its structural motifs identified and tracked throughout the fermentation process. Using carbohydrate-active enzymes, six well-defined fractions of arabinoxylans and linear xylans identified during colonic fermentation were produced and tested for interaction with tool-like receptors (TLR)2 and TLR4 via reporter cell assay. The results showed structure-dependent effects, with TLR2 inhibition and TLR4 activation varying based on the degree of polymerization and branching. Molecular docking confirmed that minor structural changes in oligomers structure significantly influenced these interactions. The study supports the hypothesis that oligomers and polysaccharides affect cell receptors through complex, multi-receptor interactions, and highlights the potential for enzymatic tailoring of DF to create functional ingredients with targeted effects on human health.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Carbohydrate Polymers
Carbohydrate Polymers 化学-高分子科学
CiteScore
22.40
自引率
8.00%
发文量
1286
审稿时长
47 days
期刊介绍: Carbohydrate Polymers stands as a prominent journal in the glycoscience field, dedicated to exploring and harnessing the potential of polysaccharides with applications spanning bioenergy, bioplastics, biomaterials, biorefining, chemistry, drug delivery, food, health, nanotechnology, packaging, paper, pharmaceuticals, medicine, oil recovery, textiles, tissue engineering, wood, and various aspects of glycoscience. The journal emphasizes the central role of well-characterized carbohydrate polymers, highlighting their significance as the primary focus rather than a peripheral topic. Each paper must prominently feature at least one named carbohydrate polymer, evident in both citation and title, with a commitment to innovative research that advances scientific knowledge.
期刊最新文献
Expression of concern: "Synthesis and evaluation of chondroitin sulfate based hydrogels of loxoprofen with adjustable properties as controlled release carriers" [Carbohydrate Polymers volume 181, 1 February 2018, pages 1169-1179]. Development of multifunctional starch/pectin composite film engineered with ZIF-67-loaded microcrystalline cellulose for real-time monitoring and preserving of pork freshness Editorial Board Enhanced printability of high-viscosity chitosan/acrylamide inks via aluminum ions coordination for precision 3D bioprinting of scaffolds Bacterial cellulose-based Pickering emulsions reinforced with silver and silica nanoparticles for advanced antibacterial and hydrophobic food packaging solutions
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1