Serum proteomics reveals early biomarkers of Alzheimer's disease: The dual role of APOE-ε4.

IF 5.7 4区 生物学 Q1 BIOLOGY Bioscience trends Pub Date : 2025-01-23 DOI:10.5582/bst.2024.01365
Ya-Nan Ma, Ying Xia, Kenji Karako, Peipei Song, Wei Tang, Xiqi Hu
{"title":"Serum proteomics reveals early biomarkers of Alzheimer's disease: The dual role of APOE-ε4.","authors":"Ya-Nan Ma, Ying Xia, Kenji Karako, Peipei Song, Wei Tang, Xiqi Hu","doi":"10.5582/bst.2024.01365","DOIUrl":null,"url":null,"abstract":"<p><p>Alzheimer's disease (AD), the leading cause of dementia, significantly impacts global public health, with cases expected to exceed 150 million by 2050. Late-onset Alzheimer's disease (LOAD), predominantly influenced by the APOE-ε4 allele, exhibits complex pathogenesis involving amyloid-β (Aβ) plaques, neurofibrillary tangles (NFTs), neuroinflammation, and blood-brain barrier (BBB) disruption. Proteomics has emerged as a pivotal technology in uncovering molecular mechanisms and identifying biomarkers for early diagnosis and intervention in AD. This paper reviews the genetic and molecular roles of APOE-ε4 in the pathology of AD, including its effects on Aβ aggregation, tau phosphorylation, neuroinflammation, and BBB integrity. Additionally, it highlights recent advances in serum proteomics, revealing APOE-ε4-dependent and independent protein signatures with potential as early biomarkers for AD. Despite technological progress, challenges such as population diversity, standardization, and distinguishing AD-specific biomarkers remain. Directions for future research emphasize multicenter longitudinal studies, multi-omics integration, and the clinical translation of proteomic findings to enable early detection of AD and personalized treatment strategies. Proteomics advances in AD research hold the promise of improving patient outcomes and reducing the global disease burden.</p>","PeriodicalId":8957,"journal":{"name":"Bioscience trends","volume":" ","pages":""},"PeriodicalIF":5.7000,"publicationDate":"2025-01-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioscience trends","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.5582/bst.2024.01365","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Alzheimer's disease (AD), the leading cause of dementia, significantly impacts global public health, with cases expected to exceed 150 million by 2050. Late-onset Alzheimer's disease (LOAD), predominantly influenced by the APOE-ε4 allele, exhibits complex pathogenesis involving amyloid-β (Aβ) plaques, neurofibrillary tangles (NFTs), neuroinflammation, and blood-brain barrier (BBB) disruption. Proteomics has emerged as a pivotal technology in uncovering molecular mechanisms and identifying biomarkers for early diagnosis and intervention in AD. This paper reviews the genetic and molecular roles of APOE-ε4 in the pathology of AD, including its effects on Aβ aggregation, tau phosphorylation, neuroinflammation, and BBB integrity. Additionally, it highlights recent advances in serum proteomics, revealing APOE-ε4-dependent and independent protein signatures with potential as early biomarkers for AD. Despite technological progress, challenges such as population diversity, standardization, and distinguishing AD-specific biomarkers remain. Directions for future research emphasize multicenter longitudinal studies, multi-omics integration, and the clinical translation of proteomic findings to enable early detection of AD and personalized treatment strategies. Proteomics advances in AD research hold the promise of improving patient outcomes and reducing the global disease burden.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
13.60
自引率
1.80%
发文量
47
审稿时长
>12 weeks
期刊介绍: BioScience Trends (Print ISSN 1881-7815, Online ISSN 1881-7823) is an international peer-reviewed journal. BioScience Trends devotes to publishing the latest and most exciting advances in scientific research. Articles cover fields of life science such as biochemistry, molecular biology, clinical research, public health, medical care system, and social science in order to encourage cooperation and exchange among scientists and clinical researchers.
期刊最新文献
Serum proteomics reveals early biomarkers of Alzheimer's disease: The dual role of APOE-ε4. Development and validation of a machine-learning model to predict lymph node metastasis of intrahepatic cholangiocarcinoma: A retrospective cohort study. Repeat laparoscopic hepatectomy versus radiofrequency ablation for recurrent hepatocellular carcinoma: A multicenter, propensity score matching analysis. The APP Score: A simple serum biomarker model to enhance prognostic prediction in hepatocellular carcinoma. First-line systemic therapy and sequencing options in advanced biliary tract cancer: A systematic review and network meta-analysis.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1