首页 > 最新文献

Bioscience trends最新文献

英文 中文
Comparative analysis of human gut bacterial microbiota between shallow shotgun metagenomic sequencing and full-length 16S rDNA amplicon sequencing.
IF 5.7 4区 生物学 Q1 BIOLOGY Pub Date : 2025-04-04 DOI: 10.5582/bst.2024.01393
Suwalak Chitcharoen, Vorthon Sawaswong, Pavit Klomkliew, Prangwalai Chanchaem, Sunchai Payungporn

The human gut microbiome is increasingly recognized as important to health and disease, influencing immune function, metabolism, mental health, and chronic illnesses. Two widely used, cost-effective, and fast approaches for analyzing gut microbial communities are shallow shotgun metagenomic sequencing (SSMS) and full-length 16S rDNA sequencing. This study compares these methods across 43 stool samples, revealing notable differences in taxonomic and species-level detection. At the genus level, Bacteroides was most abundant in both methods, with Faecalibacterium showing similar trends but Prevotella was more abundant in full-length 16S rDNA. Genera such as Alistipes and Akkermansia were more frequently detected by full-length 16S rDNA, whereas Eubacterium and Roseburia were more prevalent in SSMS. At the species level, Faecalibacterium prausnitzii, a key indicator of gut health, was abundant across both datasets, while Bacteroides vulgatus was more frequently detected by SSMS. Species within Parabacteroides and Bacteroides were primarily detected by 16S rDNA, contrasting with higher SSMS detection of Prevotella copri and Oscillibacter valericigenes. LEfSe analysis identified 18 species (9 species in each method) with significantly different detection between methods, underscoring the impact of methodological choice on microbial diversity and abundance. Differences in classification databases, such as Ribosomal Database Project (RDP) for 16S rDNA and Kraken2 for SSMS, further highlight the influence of database selection on outcomes. These findings emphasize the importance of carefully selecting sequencing methods and bioinformatics tools in microbiome research, as each approach demonstrates unique strengths and limitations in capturing microbial diversity and relative abundances.

{"title":"Comparative analysis of human gut bacterial microbiota between shallow shotgun metagenomic sequencing and full-length 16S rDNA amplicon sequencing.","authors":"Suwalak Chitcharoen, Vorthon Sawaswong, Pavit Klomkliew, Prangwalai Chanchaem, Sunchai Payungporn","doi":"10.5582/bst.2024.01393","DOIUrl":"https://doi.org/10.5582/bst.2024.01393","url":null,"abstract":"<p><p>The human gut microbiome is increasingly recognized as important to health and disease, influencing immune function, metabolism, mental health, and chronic illnesses. Two widely used, cost-effective, and fast approaches for analyzing gut microbial communities are shallow shotgun metagenomic sequencing (SSMS) and full-length 16S rDNA sequencing. This study compares these methods across 43 stool samples, revealing notable differences in taxonomic and species-level detection. At the genus level, Bacteroides was most abundant in both methods, with Faecalibacterium showing similar trends but Prevotella was more abundant in full-length 16S rDNA. Genera such as Alistipes and Akkermansia were more frequently detected by full-length 16S rDNA, whereas Eubacterium and Roseburia were more prevalent in SSMS. At the species level, Faecalibacterium prausnitzii, a key indicator of gut health, was abundant across both datasets, while Bacteroides vulgatus was more frequently detected by SSMS. Species within Parabacteroides and Bacteroides were primarily detected by 16S rDNA, contrasting with higher SSMS detection of Prevotella copri and Oscillibacter valericigenes. LEfSe analysis identified 18 species (9 species in each method) with significantly different detection between methods, underscoring the impact of methodological choice on microbial diversity and abundance. Differences in classification databases, such as Ribosomal Database Project (RDP) for 16S rDNA and Kraken2 for SSMS, further highlight the influence of database selection on outcomes. These findings emphasize the importance of carefully selecting sequencing methods and bioinformatics tools in microbiome research, as each approach demonstrates unique strengths and limitations in capturing microbial diversity and relative abundances.</p>","PeriodicalId":8957,"journal":{"name":"Bioscience trends","volume":" ","pages":""},"PeriodicalIF":5.7,"publicationDate":"2025-04-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143794507","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Multimodal treatment of colorectal liver metastases: Where are we? Current strategies and future perspectives.
IF 5.7 4区 生物学 Q1 BIOLOGY Pub Date : 2025-03-18 DOI: 10.5582/bst.2025.01012
Caterina Accardo, Ivan Vella, Fabrizio di Francesco, Sergio Rizzo, Sergio Calamia, Alessandro Tropea, Pasquale Bonsignore, Sergio Li Petri, Salvatore Gruttadauria

Despite the continued high prevalence of colorectal cancer in the Western world, recent years have witnessed a decline in its mortality rate, largely attributable to the sustained advancement of multimodal treatment modalities for metastatic patients. One persisting issue is lack of consensus between different centres and multidisciplinary teams regarding definition of resectability, the duration of chemotherapy treatment, and surgical strategy. This narrative review outlines current multimodal treatment of patients with colon cancer metastatic to the liver and/or lung in different clinical scenarios. Currently, there are multiple multimodal strategies that can be employed to enhance resectability in these patients. These include novel and sophisticated target therapies (such as novel immunotherapeutic modalities and micro RNAs), complex resections utilising parenchyma-sparing techniques, liver transplantation, and cytoreductive strategies in patients for whom a curative option is not feasible. It is the responsibility of the scientific community to establish standardised protocols across different centres, based on the most recent evidence, while maintaining a high degree of personalisation of treatment for each individual patient. It seems likely that artificial intelligence (AI) will play a significant role in achieving this goal.

{"title":"Multimodal treatment of colorectal liver metastases: Where are we? Current strategies and future perspectives.","authors":"Caterina Accardo, Ivan Vella, Fabrizio di Francesco, Sergio Rizzo, Sergio Calamia, Alessandro Tropea, Pasquale Bonsignore, Sergio Li Petri, Salvatore Gruttadauria","doi":"10.5582/bst.2025.01012","DOIUrl":"https://doi.org/10.5582/bst.2025.01012","url":null,"abstract":"<p><p>Despite the continued high prevalence of colorectal cancer in the Western world, recent years have witnessed a decline in its mortality rate, largely attributable to the sustained advancement of multimodal treatment modalities for metastatic patients. One persisting issue is lack of consensus between different centres and multidisciplinary teams regarding definition of resectability, the duration of chemotherapy treatment, and surgical strategy. This narrative review outlines current multimodal treatment of patients with colon cancer metastatic to the liver and/or lung in different clinical scenarios. Currently, there are multiple multimodal strategies that can be employed to enhance resectability in these patients. These include novel and sophisticated target therapies (such as novel immunotherapeutic modalities and micro RNAs), complex resections utilising parenchyma-sparing techniques, liver transplantation, and cytoreductive strategies in patients for whom a curative option is not feasible. It is the responsibility of the scientific community to establish standardised protocols across different centres, based on the most recent evidence, while maintaining a high degree of personalisation of treatment for each individual patient. It seems likely that artificial intelligence (AI) will play a significant role in achieving this goal.</p>","PeriodicalId":8957,"journal":{"name":"Bioscience trends","volume":" ","pages":""},"PeriodicalIF":5.7,"publicationDate":"2025-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143655943","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Exosomes derived from olfactory mucosa mesenchymal stem cells attenuate cognitive impairment in a mouse model of Alzheimer's disease.
IF 5.7 4区 生物学 Q1 BIOLOGY Pub Date : 2025-03-18 DOI: 10.5582/bst.2025.01065
Xiqi Hu, Ya-Nan Ma, Jun Peng, Zijie Wang, Yuchang Liang, Ying Xia

Alzheimer's disease (AD) is a progressive neurodegenerative disorder characterized by cognitive decline, neuroinflammation, and endoplasmic reticulum (ER) stress. In recent years, exosomes have garnered significant attention as a potential therapeutic tool for neurodegenerative diseases. This study, for the first time, investigates the neuroprotective effects of exosomes derived from olfactory mucosa mesenchymal stem cells (OM-MSCs-Exos) in AD and further explore the potential role of low-density lipoprotein receptor-related protein 1 (LRP1) in this process. Using an Aβ1-42-induced AD mouse model, we observed that OM-MSCs-Exos significantly improved cognitive function in behavioral tests, reduced neuroinflammatory responses, alleviated ER stress, and decreased neuronal apoptosis. Further analysis revealed that OM-MSCs-Exos exert neuroprotective effects by modulating the activation of microglia and astrocytes and influencing the ER stress response, a process that may involve LRP1. Although these findings support the potential neuroprotective effects of OM-MSCs-Exos, further studies are required to explore their long-term stability, dose dependency, and immunogenicity to assess their feasibility for clinical applications.

{"title":"Exosomes derived from olfactory mucosa mesenchymal stem cells attenuate cognitive impairment in a mouse model of Alzheimer's disease.","authors":"Xiqi Hu, Ya-Nan Ma, Jun Peng, Zijie Wang, Yuchang Liang, Ying Xia","doi":"10.5582/bst.2025.01065","DOIUrl":"https://doi.org/10.5582/bst.2025.01065","url":null,"abstract":"<p><p>Alzheimer's disease (AD) is a progressive neurodegenerative disorder characterized by cognitive decline, neuroinflammation, and endoplasmic reticulum (ER) stress. In recent years, exosomes have garnered significant attention as a potential therapeutic tool for neurodegenerative diseases. This study, for the first time, investigates the neuroprotective effects of exosomes derived from olfactory mucosa mesenchymal stem cells (OM-MSCs-Exos) in AD and further explore the potential role of low-density lipoprotein receptor-related protein 1 (LRP1) in this process. Using an Aβ1-42-induced AD mouse model, we observed that OM-MSCs-Exos significantly improved cognitive function in behavioral tests, reduced neuroinflammatory responses, alleviated ER stress, and decreased neuronal apoptosis. Further analysis revealed that OM-MSCs-Exos exert neuroprotective effects by modulating the activation of microglia and astrocytes and influencing the ER stress response, a process that may involve LRP1. Although these findings support the potential neuroprotective effects of OM-MSCs-Exos, further studies are required to explore their long-term stability, dose dependency, and immunogenicity to assess their feasibility for clinical applications.</p>","PeriodicalId":8957,"journal":{"name":"Bioscience trends","volume":" ","pages":""},"PeriodicalIF":5.7,"publicationDate":"2025-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143655936","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
From light to insight: Functional near-infrared spectroscopy for unravelling cognitive impairment during task performance.
IF 5.7 4区 生物学 Q1 BIOLOGY Pub Date : 2025-03-06 Epub Date: 2025-01-25 DOI: 10.5582/bst.2024.01362
Na Liu, Lingling Yang, Xiuqing Yao, Yaxi Luo

Cognitive impairment refers to the impairment of higher brain functions such as perception, thinking or memory that affects the individual's ability to perform daily or social activities. Studies have found that changes in neuronal activity during tasks in patients with cognitive impairment are closely related to changes in cerebral cortical hemodynamics. Functional near-infrared spectroscopy is an indirect method to measure neural activity based on changes in blood oxygen concentration in the cerebral cortex. Due to its strong anti-motion interference, high compatibility, and almost no restriction on participants and environment, it has shown great potential in the research field of cognitive impairment. Recognizing these benefits, this comprehensive review systematically elucidates the rationale, historical development, advantages and disadvantages of functional near-infrared spectroscopy, and also discusses the applications of combining functional near-infrared spectroscopy with other detection techniques. Additionally, this review summarized how functional near-infrared spectroscopy can be applied to cognitive impairment caused by different diseases, ultimately aiding the study of neural mechanisms of cognitive activities, which is crucial for the diagnosis, differentiation and treatment of cognitive impairment.

{"title":"From light to insight: Functional near-infrared spectroscopy for unravelling cognitive impairment during task performance.","authors":"Na Liu, Lingling Yang, Xiuqing Yao, Yaxi Luo","doi":"10.5582/bst.2024.01362","DOIUrl":"10.5582/bst.2024.01362","url":null,"abstract":"<p><p>Cognitive impairment refers to the impairment of higher brain functions such as perception, thinking or memory that affects the individual's ability to perform daily or social activities. Studies have found that changes in neuronal activity during tasks in patients with cognitive impairment are closely related to changes in cerebral cortical hemodynamics. Functional near-infrared spectroscopy is an indirect method to measure neural activity based on changes in blood oxygen concentration in the cerebral cortex. Due to its strong anti-motion interference, high compatibility, and almost no restriction on participants and environment, it has shown great potential in the research field of cognitive impairment. Recognizing these benefits, this comprehensive review systematically elucidates the rationale, historical development, advantages and disadvantages of functional near-infrared spectroscopy, and also discusses the applications of combining functional near-infrared spectroscopy with other detection techniques. Additionally, this review summarized how functional near-infrared spectroscopy can be applied to cognitive impairment caused by different diseases, ultimately aiding the study of neural mechanisms of cognitive activities, which is crucial for the diagnosis, differentiation and treatment of cognitive impairment.</p>","PeriodicalId":8957,"journal":{"name":"Bioscience trends","volume":" ","pages":"53-71"},"PeriodicalIF":5.7,"publicationDate":"2025-03-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143045502","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
N5-((perfluorophenyl)amino)glutamine regulates BACE1, tau phosphorylation, synaptic function, and neuroinflammation in Alzheimer's disease models.
IF 5.7 4区 生物学 Q1 BIOLOGY Pub Date : 2025-03-06 Epub Date: 2025-01-25 DOI: 10.5582/bst.2024.01360
Jun-Sik Kim, Yongeun Cho, Jeongmi Lee, Heewon Cho, Sukmin Han, Yeongyeong Lee, Yeji Jeon, Tai Kyoung Kim, Ju-Mi Hong, Jeonghyeong Im, Minshik Chae, Yujeong Lee, Hyunwook Kim, Sang Yoon Park, Sung Hyun Kim, Joung Han Yim, Dong-Gyu Jo

Alzheimer's disease (AD) is the most common type of dementia. Its incidence is rising rapidly as the global population ages, leading to a significant social and economic burden. AD involves complex pathologies, including amyloid plaque accumulation, synaptic dysfunction, and neuroinflammation. This study explores the therapeutic potential of N 5 -((perfluorophenyl)amino)glutamine (RA-PF), a derivative of γ-glutamyl-N'-(2-hydroxyphenyl)hydrazide (Ramalin), a compound with antioxidant and anti-inflammatory properties. Administration of RA-PF to 5xFAD mice decreases BACE1, reduces Aβ plaque deposition, inhibits microglial activation, restores synaptic transmission, and improves mitochondrial motility, leading to the recovery of cognitive function. Additionally, RA-PF treatment in 3xTg-AD mice alleviates anxiety-like behaviors, tau phosphorylation via inactivating GSK-3β, and BACE1 expression. Further transcriptomic analysis reveals RA-PF treatment in AD mice models recovers phagosome, inflammation, NOD-like receptor, presynaptic membrane, and postsynaptic membrane related signaling pathways. These findings suggest that RA-PF effectively targets multiple aspects of AD pathology, offering a novel multi-target approach for AD treatment.

{"title":"N<sup>5</sup>-((perfluorophenyl)amino)glutamine regulates BACE1, tau phosphorylation, synaptic function, and neuroinflammation in Alzheimer's disease models.","authors":"Jun-Sik Kim, Yongeun Cho, Jeongmi Lee, Heewon Cho, Sukmin Han, Yeongyeong Lee, Yeji Jeon, Tai Kyoung Kim, Ju-Mi Hong, Jeonghyeong Im, Minshik Chae, Yujeong Lee, Hyunwook Kim, Sang Yoon Park, Sung Hyun Kim, Joung Han Yim, Dong-Gyu Jo","doi":"10.5582/bst.2024.01360","DOIUrl":"10.5582/bst.2024.01360","url":null,"abstract":"<p><p>Alzheimer's disease (AD) is the most common type of dementia. Its incidence is rising rapidly as the global population ages, leading to a significant social and economic burden. AD involves complex pathologies, including amyloid plaque accumulation, synaptic dysfunction, and neuroinflammation. This study explores the therapeutic potential of N <sup>5</sup> -((perfluorophenyl)amino)glutamine (RA-PF), a derivative of γ-glutamyl-N'-(2-hydroxyphenyl)hydrazide (Ramalin), a compound with antioxidant and anti-inflammatory properties. Administration of RA-PF to 5xFAD mice decreases BACE1, reduces Aβ plaque deposition, inhibits microglial activation, restores synaptic transmission, and improves mitochondrial motility, leading to the recovery of cognitive function. Additionally, RA-PF treatment in 3xTg-AD mice alleviates anxiety-like behaviors, tau phosphorylation via inactivating GSK-3β, and BACE1 expression. Further transcriptomic analysis reveals RA-PF treatment in AD mice models recovers phagosome, inflammation, NOD-like receptor, presynaptic membrane, and postsynaptic membrane related signaling pathways. These findings suggest that RA-PF effectively targets multiple aspects of AD pathology, offering a novel multi-target approach for AD treatment.</p>","PeriodicalId":8957,"journal":{"name":"Bioscience trends","volume":" ","pages":"102-115"},"PeriodicalIF":5.7,"publicationDate":"2025-03-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143045548","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Multimodal optimal matching and augmentation method for small sample gesture recognition.
IF 5.7 4区 生物学 Q1 BIOLOGY Pub Date : 2025-03-06 Epub Date: 2025-01-25 DOI: 10.5582/bst.2024.01370
Wenli Zhang, Bo Liu, Tingsong Zhao, Shuyan Qie

In human-computer interaction, gesture recognition based on physiological signals offers advantages such as a more natural and fast interaction mode and less constrained by the environment than visual-based. Surface electromyography-based gesture recognition has significantly progressed. However, since individuals have physical differences, researchers must collect data multiple times from each user to train the deep learning model. This data acquisition process can be particularly burdensome for non-healthy users. Researchers are currently exploring transfer learning and data augmentation techniques to enhance the accuracy of small-sample gesture recognition models. However, challenges persist, such as negative transfer and limited diversity in training samples, leading to suboptimal recognition performance. Therefore, We introduce motion information into sEMG-based recognition and propose a multimodal optimal matching and augmentation method for small sample gesture recognition, achieving efficient gesture recognition with only one acquisition per gesture. Firstly, this method utilizes the optimal matching signal selection module to select the most similar signals from the existing data to the new user as the training set, reducing inter-domain differences. Secondly, the similarity calculation augmentation module enhances the diversity of the training set. Finally, the Modal-type embedding enhances the information interaction between each mode signal. We evaluated the effectiveness on Self-collected Stroke Patient, the Ninapro DB1 dataset and the Ninapro DB5 dataset and achieved accuracies of 93.69%, 91.65% and 98.56%, respectively. These results demonstrate that the method achieved performance comparable to traditional recognition models while significantly reducing the collected data.

{"title":"Multimodal optimal matching and augmentation method for small sample gesture recognition.","authors":"Wenli Zhang, Bo Liu, Tingsong Zhao, Shuyan Qie","doi":"10.5582/bst.2024.01370","DOIUrl":"10.5582/bst.2024.01370","url":null,"abstract":"<p><p>In human-computer interaction, gesture recognition based on physiological signals offers advantages such as a more natural and fast interaction mode and less constrained by the environment than visual-based. Surface electromyography-based gesture recognition has significantly progressed. However, since individuals have physical differences, researchers must collect data multiple times from each user to train the deep learning model. This data acquisition process can be particularly burdensome for non-healthy users. Researchers are currently exploring transfer learning and data augmentation techniques to enhance the accuracy of small-sample gesture recognition models. However, challenges persist, such as negative transfer and limited diversity in training samples, leading to suboptimal recognition performance. Therefore, We introduce motion information into sEMG-based recognition and propose a multimodal optimal matching and augmentation method for small sample gesture recognition, achieving efficient gesture recognition with only one acquisition per gesture. Firstly, this method utilizes the optimal matching signal selection module to select the most similar signals from the existing data to the new user as the training set, reducing inter-domain differences. Secondly, the similarity calculation augmentation module enhances the diversity of the training set. Finally, the Modal-type embedding enhances the information interaction between each mode signal. We evaluated the effectiveness on Self-collected Stroke Patient, the Ninapro DB1 dataset and the Ninapro DB5 dataset and achieved accuracies of 93.69%, 91.65% and 98.56%, respectively. These results demonstrate that the method achieved performance comparable to traditional recognition models while significantly reducing the collected data.</p>","PeriodicalId":8957,"journal":{"name":"Bioscience trends","volume":" ","pages":"125-139"},"PeriodicalIF":5.7,"publicationDate":"2025-03-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143045547","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Growth and differentiation factor 15: An emerging therapeutic target for brain diseases.
IF 5.7 4区 生物学 Q1 BIOLOGY Pub Date : 2025-03-06 Epub Date: 2025-01-25 DOI: 10.5582/bst.2024.01305
Yingying Zhou, Lei Dou, Luyao Wang, Jiajie Chen, Ruxue Mao, Lingqiang Zhu, Dan Liu, Kai Zheng

Growth and differentiation factor 15 (GDF15), a member of the transforming growth factor-βsuperfamily, is considered a stress response factor and has garnered increasing attention in recent years due to its roles in neurological diseases. Although many studies have suggested that GDF15 expression is elevated in patients with neurodegenerative diseases (NDDs), glioma, and ischemic stroke, the effects of increased GDF15 expression and the potential underlying mechanisms remain unclear. Notably, many experimental studies have shown the multidimensional beneficial effects of GDF15 on NDDs, and GDF15 overexpression is able to rescue NDD-associated pathological changes and phenotypes. In glioma, GDF15 exerts opposite effects, it is both protumorigenic and antitumorigenic. The causes of these conflicting findings are not comprehensively clear, but inhibiting GDF15 is helpful for suppressing tumor progression. GDF15 is also regarded as a biomarker of poor clinical outcomes in ischemic stroke patients, and targeting GDF15 may help prevent this disease. Thus, we systematically reviewed the synthesis, transcriptional regulation, and biological functions of GDF15 and its related signaling pathways within the brain. Furthermore, we explored the potential of GDF15 as a therapeutic target and assessed its clinical applicability in interventions for brain diseases. By integrating the latest research findings, this study provides new insights into the future treatment of neurological diseases.

{"title":"Growth and differentiation factor 15: An emerging therapeutic target for brain diseases.","authors":"Yingying Zhou, Lei Dou, Luyao Wang, Jiajie Chen, Ruxue Mao, Lingqiang Zhu, Dan Liu, Kai Zheng","doi":"10.5582/bst.2024.01305","DOIUrl":"10.5582/bst.2024.01305","url":null,"abstract":"<p><p>Growth and differentiation factor 15 (GDF15), a member of the transforming growth factor-βsuperfamily, is considered a stress response factor and has garnered increasing attention in recent years due to its roles in neurological diseases. Although many studies have suggested that GDF15 expression is elevated in patients with neurodegenerative diseases (NDDs), glioma, and ischemic stroke, the effects of increased GDF15 expression and the potential underlying mechanisms remain unclear. Notably, many experimental studies have shown the multidimensional beneficial effects of GDF15 on NDDs, and GDF15 overexpression is able to rescue NDD-associated pathological changes and phenotypes. In glioma, GDF15 exerts opposite effects, it is both protumorigenic and antitumorigenic. The causes of these conflicting findings are not comprehensively clear, but inhibiting GDF15 is helpful for suppressing tumor progression. GDF15 is also regarded as a biomarker of poor clinical outcomes in ischemic stroke patients, and targeting GDF15 may help prevent this disease. Thus, we systematically reviewed the synthesis, transcriptional regulation, and biological functions of GDF15 and its related signaling pathways within the brain. Furthermore, we explored the potential of GDF15 as a therapeutic target and assessed its clinical applicability in interventions for brain diseases. By integrating the latest research findings, this study provides new insights into the future treatment of neurological diseases.</p>","PeriodicalId":8957,"journal":{"name":"Bioscience trends","volume":" ","pages":"72-86"},"PeriodicalIF":5.7,"publicationDate":"2025-03-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143045503","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The glamor of and insights regarding hydrotherapy, from simple immersion to advanced computer-assisted exercises: A narrative review. 关于水疗的魅力和见解,从简单的浸入到先进的计算机辅助练习:叙述回顾。
IF 5.7 4区 生物学 Q1 BIOLOGY Pub Date : 2025-03-06 Epub Date: 2025-01-03 DOI: 10.5582/bst.2024.01356
Yaohan Peng, Yucong Zou, Tetsuya Asakawa

Water-based therapy has been gaining attention in recent years and is being widely used in clinical settings. Hydrotherapy is the most important area of water-based therapy, and it has distinct advantages and characteristics compared to conventional land-based exercises. Several new techniques and pieces of equipment are currently emerging with advances in computer technologies. However, comprehensive reviews of hydrotherapy are insufficient. Hence, this study reviewed the status quo, mechanisms, adverse events and contraindications, and future prospects of the use of hydrotherapy. This study aims to comprehensively review the latest information regarding the application of hydrotherapy to musculoskeletal diseases, neurological diseases, and COVID-19. We have attempted to provide a "take-home message" regarding the clinical applications and mechanisms of hydrotherapy based on the latest evidence available.

近年来,水基疗法受到越来越多的关注,并广泛应用于临床。水疗法是水基疗法中最重要的领域,与传统的陆基练习相比,它具有明显的优势和特点。随着计算机技术的进步,一些新技术和新设备正在出现。然而,对水疗法的综合评价是不够的。因此,本研究综述了水疗法的现状、机制、不良事件和禁忌症,并对其应用前景进行了展望。本研究旨在全面综述水疗法在肌肉骨骼疾病、神经系统疾病和COVID-19中的应用的最新信息。我们试图根据现有的最新证据,就水疗法的临床应用和机制提供一个“带回家的信息”。
{"title":"The glamor of and insights regarding hydrotherapy, from simple immersion to advanced computer-assisted exercises: A narrative review.","authors":"Yaohan Peng, Yucong Zou, Tetsuya Asakawa","doi":"10.5582/bst.2024.01356","DOIUrl":"10.5582/bst.2024.01356","url":null,"abstract":"<p><p>Water-based therapy has been gaining attention in recent years and is being widely used in clinical settings. Hydrotherapy is the most important area of water-based therapy, and it has distinct advantages and characteristics compared to conventional land-based exercises. Several new techniques and pieces of equipment are currently emerging with advances in computer technologies. However, comprehensive reviews of hydrotherapy are insufficient. Hence, this study reviewed the status quo, mechanisms, adverse events and contraindications, and future prospects of the use of hydrotherapy. This study aims to comprehensively review the latest information regarding the application of hydrotherapy to musculoskeletal diseases, neurological diseases, and COVID-19. We have attempted to provide a \"take-home message\" regarding the clinical applications and mechanisms of hydrotherapy based on the latest evidence available.</p>","PeriodicalId":8957,"journal":{"name":"Bioscience trends","volume":" ","pages":"10-30"},"PeriodicalIF":5.7,"publicationDate":"2025-03-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142930622","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Intestinal microbiota distribution and changes in different stages of Parkinson's disease: A meta-analysis, bioinformatics analysis and in vivo simulation.
IF 5.7 4区 生物学 Q1 BIOLOGY Pub Date : 2025-03-06 Epub Date: 2025-01-25 DOI: 10.5582/bst.2024.01352
Tingyue Jiang, Yu Wang, Wenxin Fan, Yifan Lu, Ge Zhang, Jiayuan Li, Renzhi Ma, Mengmeng Liu, Jinli Shi

Parkinson's disease (PD) is a progressive disease that requires effective staging management. The role of intestinal microbiota in PD has been studied, but its changes at different stages are not clear. In this study, meta- analysis, bioinformatics analysis and in vivo simulation were used to explore the intestinal microbiota distribution of PD patients and models at different stages. Two PD models at different stages were established in rotenone-treated rats and MPTP-induced mice. The differences in the intestinal microbiota among the different stages of PD patients or models were compared and analyzed. There were significant differences between PD patients and controls, including Actinobacteriota, Deltaproteobacteria, Clostridiales, Lachnospiraceae, Parabacteroides, etc. Through bioinformatics analysis, we revealed significant differences between PD patients at different stages and controls, including Actinobacteriota, Methanobacteria, Erysipelotrichales, Prevotellaceae, Parabacteroides, Parabacteroides gordonii, etc. Through meta-analysis, we found that Actinobacteriota and Erysipelotrichaceae had significantly increased in the chronic MPTP model, while Prevotellaceae had significantly decreased. PD rats and mice presented significant damage to motor function, coordination, autonomous activity ability and gastrointestinal function, and the damage in the late group was greater than that in the early group. There were significant differences in intestinal microbiota between PD patients or models at different stages and the control groups. In the early stage, the dominant microbiota are Akkermansia, Alistipes, Anaerotruncus, Bilophila, Rikenellaceae, Verrucomicrobia and Verrucomicrobiae, whereas in the late stage, the dominant microbiota are Actinobacteriota and Erysipelotrichaceae. These differences can lay a foundation for subsequent research on the treatment and mechanism of PD at different stages.

{"title":"Intestinal microbiota distribution and changes in different stages of Parkinson's disease: A meta-analysis, bioinformatics analysis and in vivo simulation.","authors":"Tingyue Jiang, Yu Wang, Wenxin Fan, Yifan Lu, Ge Zhang, Jiayuan Li, Renzhi Ma, Mengmeng Liu, Jinli Shi","doi":"10.5582/bst.2024.01352","DOIUrl":"10.5582/bst.2024.01352","url":null,"abstract":"<p><p>Parkinson's disease (PD) is a progressive disease that requires effective staging management. The role of intestinal microbiota in PD has been studied, but its changes at different stages are not clear. In this study, meta- analysis, bioinformatics analysis and in vivo simulation were used to explore the intestinal microbiota distribution of PD patients and models at different stages. Two PD models at different stages were established in rotenone-treated rats and MPTP-induced mice. The differences in the intestinal microbiota among the different stages of PD patients or models were compared and analyzed. There were significant differences between PD patients and controls, including Actinobacteriota, Deltaproteobacteria, Clostridiales, Lachnospiraceae, Parabacteroides, etc. Through bioinformatics analysis, we revealed significant differences between PD patients at different stages and controls, including Actinobacteriota, Methanobacteria, Erysipelotrichales, Prevotellaceae, Parabacteroides, Parabacteroides gordonii, etc. Through meta-analysis, we found that Actinobacteriota and Erysipelotrichaceae had significantly increased in the chronic MPTP model, while Prevotellaceae had significantly decreased. PD rats and mice presented significant damage to motor function, coordination, autonomous activity ability and gastrointestinal function, and the damage in the late group was greater than that in the early group. There were significant differences in intestinal microbiota between PD patients or models at different stages and the control groups. In the early stage, the dominant microbiota are Akkermansia, Alistipes, Anaerotruncus, Bilophila, Rikenellaceae, Verrucomicrobia and Verrucomicrobiae, whereas in the late stage, the dominant microbiota are Actinobacteriota and Erysipelotrichaceae. These differences can lay a foundation for subsequent research on the treatment and mechanism of PD at different stages.</p>","PeriodicalId":8957,"journal":{"name":"Bioscience trends","volume":" ","pages":"87-101"},"PeriodicalIF":5.7,"publicationDate":"2025-03-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143045546","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Plasma extracellular vesicle pathognomonic proteins as the biomarkers of the progression of Parkinson's disease.
IF 5.7 4区 生物学 Q1 BIOLOGY Pub Date : 2025-03-06 Epub Date: 2025-02-09 DOI: 10.5582/bst.2024.01369
Chien-Tai Hong, Chen-Chih Chung, Yi-Chen Hsieh, Lung Chan

Parkinson's disease (PD) is a progressive neurodegenerative disorder for which reliable blood biomarkers to predict disease progression remain elusive. Plasma extracellular vesicles (EVs) have gained attention as a promising biomarker platform due to their stability and ability to cross the blood-brain barrier. This study explored the potential of EV-cargo proteins, specifically α-synuclein, tau, and β-amyloid, as biomarkers of PD progression. A cohort of 55 people with PD (PwP) and 58 healthy controls (HCs) underwent annual assessments of plasma EV proteins, cognition, and motor symptoms. EVs were isolated and validated using standardized methods, with pathognomonic proteins quantified via immunomagnetic reduction assays. Associations between biomarker changes and clinical symptom progression were analyzed. Over an average of 3.96 visits for PwP and 2.25 visits for HCs, PwP exhibited a distinct pattern of plasma EV protein changes linked to motor symptom progression, particularly in the Unified PD Rating Scale (UPDRS) part II score. Notably, changes in plasma EV α-synuclein levels were significantly correlated with changes in motor and cognitive symptoms, suggesting its central role in disease progression. These findings highlight the potential of plasma EV biomarkers, especially α-synuclein, as indicators of ongoing pathogenesis and as candidates for evaluating α-synuclein-targeted therapies in PD.

{"title":"Plasma extracellular vesicle pathognomonic proteins as the biomarkers of the progression of Parkinson's disease.","authors":"Chien-Tai Hong, Chen-Chih Chung, Yi-Chen Hsieh, Lung Chan","doi":"10.5582/bst.2024.01369","DOIUrl":"10.5582/bst.2024.01369","url":null,"abstract":"<p><p>Parkinson's disease (PD) is a progressive neurodegenerative disorder for which reliable blood biomarkers to predict disease progression remain elusive. Plasma extracellular vesicles (EVs) have gained attention as a promising biomarker platform due to their stability and ability to cross the blood-brain barrier. This study explored the potential of EV-cargo proteins, specifically α-synuclein, tau, and β-amyloid, as biomarkers of PD progression. A cohort of 55 people with PD (PwP) and 58 healthy controls (HCs) underwent annual assessments of plasma EV proteins, cognition, and motor symptoms. EVs were isolated and validated using standardized methods, with pathognomonic proteins quantified via immunomagnetic reduction assays. Associations between biomarker changes and clinical symptom progression were analyzed. Over an average of 3.96 visits for PwP and 2.25 visits for HCs, PwP exhibited a distinct pattern of plasma EV protein changes linked to motor symptom progression, particularly in the Unified PD Rating Scale (UPDRS) part II score. Notably, changes in plasma EV α-synuclein levels were significantly correlated with changes in motor and cognitive symptoms, suggesting its central role in disease progression. These findings highlight the potential of plasma EV biomarkers, especially α-synuclein, as indicators of ongoing pathogenesis and as candidates for evaluating α-synuclein-targeted therapies in PD.</p>","PeriodicalId":8957,"journal":{"name":"Bioscience trends","volume":" ","pages":"116-124"},"PeriodicalIF":5.7,"publicationDate":"2025-03-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143381664","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Bioscience trends
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1