Muwei Jian, Wenjing Xu, ChangQun Nie, Shuo Li, Songwen Yang, Xiaoguang Li
{"title":"DAU-Net: a novel U-Net with dual attention for retinal vessel segmentation.","authors":"Muwei Jian, Wenjing Xu, ChangQun Nie, Shuo Li, Songwen Yang, Xiaoguang Li","doi":"10.1088/2057-1976/ada9f0","DOIUrl":null,"url":null,"abstract":"<p><p>In fundus images, precisely segmenting retinal blood vessels is important for diagnosing eye-related conditions, such as diabetic retinopathy and hypertensive retinopathy or other eye-related disorders. In this work, we propose an enhanced U-shaped network with dual-attention, named DAU-Net, divided into encoder and decoder parts. Wherein, we replace the traditional convolutional layers with ConvNeXt Block and SnakeConv Block to strengthen its recognition ability for different forms of blood vessels while lightweight the model. Additionally, we designed two efficient attention modules, namely Local-Global Attention (LGA) and Cross-Fusion Attention (CFA). Specifically, LGA conducts attention calculations on the features extracted by the encoder to accentuate vessel-related characteristics while suppressing irrelevant background information; CFA addresses potential information loss during feature extraction by globally modeling pixel interactions between encoder and decoder features. Comprehensive experiments in terms of public datasets DRIVE, CHASE_DB1, and STARE demonstrate that DAU-Net obtains excellent segmentation results on all three datasets. The results show an AUC of 0.9818, ACC of 0.8299, and F1 score of 0.9585 on DRIVE; 0.9894, 0.8499, and 0.9700 on CHASE_DB1; and 0.9908, 0.8620, and 0.9712 on STARE, respectively. These results strongly demonstrate the effectiveness of DAU-Net in retinal vessel segmentation, highlighting its potential for practical clinical use.</p>","PeriodicalId":8896,"journal":{"name":"Biomedical Physics & Engineering Express","volume":"11 2","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2025-01-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomedical Physics & Engineering Express","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1088/2057-1976/ada9f0","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
引用次数: 0
Abstract
In fundus images, precisely segmenting retinal blood vessels is important for diagnosing eye-related conditions, such as diabetic retinopathy and hypertensive retinopathy or other eye-related disorders. In this work, we propose an enhanced U-shaped network with dual-attention, named DAU-Net, divided into encoder and decoder parts. Wherein, we replace the traditional convolutional layers with ConvNeXt Block and SnakeConv Block to strengthen its recognition ability for different forms of blood vessels while lightweight the model. Additionally, we designed two efficient attention modules, namely Local-Global Attention (LGA) and Cross-Fusion Attention (CFA). Specifically, LGA conducts attention calculations on the features extracted by the encoder to accentuate vessel-related characteristics while suppressing irrelevant background information; CFA addresses potential information loss during feature extraction by globally modeling pixel interactions between encoder and decoder features. Comprehensive experiments in terms of public datasets DRIVE, CHASE_DB1, and STARE demonstrate that DAU-Net obtains excellent segmentation results on all three datasets. The results show an AUC of 0.9818, ACC of 0.8299, and F1 score of 0.9585 on DRIVE; 0.9894, 0.8499, and 0.9700 on CHASE_DB1; and 0.9908, 0.8620, and 0.9712 on STARE, respectively. These results strongly demonstrate the effectiveness of DAU-Net in retinal vessel segmentation, highlighting its potential for practical clinical use.
期刊介绍:
BPEX is an inclusive, international, multidisciplinary journal devoted to publishing new research on any application of physics and/or engineering in medicine and/or biology. Characterized by a broad geographical coverage and a fast-track peer-review process, relevant topics include all aspects of biophysics, medical physics and biomedical engineering. Papers that are almost entirely clinical or biological in their focus are not suitable. The journal has an emphasis on publishing interdisciplinary work and bringing research fields together, encompassing experimental, theoretical and computational work.