Santhosh Mudipalli Elavarasu, Karthick Vasudevan, K Sasikumar, George Priya Doss C
{"title":"The role of ABI2 in modulating nuclear proteins: Therapeutic implications for NUP54 and NUP153 in TNBC.","authors":"Santhosh Mudipalli Elavarasu, Karthick Vasudevan, K Sasikumar, George Priya Doss C","doi":"10.1016/bs.apcsb.2024.09.011","DOIUrl":null,"url":null,"abstract":"<p><p>Triple-negative breast cancer (TNBC) is a highly aggressive subtype of breast cancer that lacks hormone receptors, which makes it more likely to metastasize and have a poor prognosis. Despite some effectiveness of chemotherapy, TNBC remains challenging to manage, with high relapse and mortality rates. Recent findings have highlighted the role of the ubiquitin-protease system in TNBC, with ABI2 identified as a significant regulator. Reduced ABI2 expression is associated with aggressive disease and poor outcomes, whereas ABI2 overexpression (OE-ABI2) inhibits TNBC cell proliferation by modulating the PI3K/Akt signaling pathway. Although ABI2 is not a nuclear protein, it influences critical nuclear functions such as DNA repair and gene expression. Nuclear proteins, particularly those in the nuclear pore complex and nuclear matrix, are essential for cellular functions and have been linked to various diseases, including cancer. This study used RNA sequencing (RNA-seq) to examine the gene expression in MDA-MB-231 cell line and ABI2-overexpressing cells. Differentially expressed genes were annotated, and a protein-protein interaction network was constructed. Network and enrichment analysis identified the nucleoporins NUP54 and NUP153 as potential novel targets for TNBC. This study emphasizes the impact of ABI2 on nuclear proteins and suggests that targeting NUP54 and NUP153 could offer new therapeutic options for TNBC.</p>","PeriodicalId":7376,"journal":{"name":"Advances in protein chemistry and structural biology","volume":"143 ","pages":"97-115"},"PeriodicalIF":0.0000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in protein chemistry and structural biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/bs.apcsb.2024.09.011","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/16 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"Biochemistry, Genetics and Molecular Biology","Score":null,"Total":0}
引用次数: 0
Abstract
Triple-negative breast cancer (TNBC) is a highly aggressive subtype of breast cancer that lacks hormone receptors, which makes it more likely to metastasize and have a poor prognosis. Despite some effectiveness of chemotherapy, TNBC remains challenging to manage, with high relapse and mortality rates. Recent findings have highlighted the role of the ubiquitin-protease system in TNBC, with ABI2 identified as a significant regulator. Reduced ABI2 expression is associated with aggressive disease and poor outcomes, whereas ABI2 overexpression (OE-ABI2) inhibits TNBC cell proliferation by modulating the PI3K/Akt signaling pathway. Although ABI2 is not a nuclear protein, it influences critical nuclear functions such as DNA repair and gene expression. Nuclear proteins, particularly those in the nuclear pore complex and nuclear matrix, are essential for cellular functions and have been linked to various diseases, including cancer. This study used RNA sequencing (RNA-seq) to examine the gene expression in MDA-MB-231 cell line and ABI2-overexpressing cells. Differentially expressed genes were annotated, and a protein-protein interaction network was constructed. Network and enrichment analysis identified the nucleoporins NUP54 and NUP153 as potential novel targets for TNBC. This study emphasizes the impact of ABI2 on nuclear proteins and suggests that targeting NUP54 and NUP153 could offer new therapeutic options for TNBC.
期刊介绍:
Published continuously since 1944, The Advances in Protein Chemistry and Structural Biology series has been the essential resource for protein chemists. Each volume brings forth new information about protocols and analysis of proteins. Each thematically organized volume is guest edited by leading experts in a broad range of protein-related topics.