{"title":"Transcription factors and genome biases in polyploid crops.","authors":"Raminder Kaur, Vikas Rishi","doi":"10.1016/bs.apcsb.2024.09.005","DOIUrl":null,"url":null,"abstract":"<p><p>Nuclear protein transcription factors (TFs) regulate all biological processes in plants and are necessary for gene regulation. The transcription of genes during plant growth and development and their response to environmental cues are regulated by TF binding to specific promoter regions in the genomic DNA. Polyploid plants with several sets of chromosomes frequently display intricate genomic biases concerning TF expression. One or more subgenomes may dominate in terms of gene expression, leading to subgenome biases or dominance. These biases can influence various aspects of the crop's biology, including its growth, development, and adaptation. Advances in genomics have speed up the improvement of many important agricultural diploid crops, yet comparable endeavours in polyploid crops have been more challenging. This challenge primarily stems from the large size and intricate nature of the complex genome in polyploid crops, along with the need for comprehensive genome assembly data for such crop varieties as bread wheat, cotton and sugarcane. Several studies have evaluated the biased/asymmetric gene expression patterns, including TFs, within the polyploid crop genomes. In many polyploid crops, not all homologues of TF genes contribute equally to the phenotype. Here, we have examined polyploid crop plants for homeolog gene expression, emphasizing TFs. It is observed that the polyploids retain many gene alleles as functional homeologs that define important features involved in stress response, sugar metabolism, and fibre formation. The possible molecular mechanism describing the structural and epigenetic basis of differential subgenomic TF expression in polyploids is discussed.</p>","PeriodicalId":7376,"journal":{"name":"Advances in protein chemistry and structural biology","volume":"143 ","pages":"301-321"},"PeriodicalIF":0.0000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in protein chemistry and structural biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/bs.apcsb.2024.09.005","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/9/20 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"Biochemistry, Genetics and Molecular Biology","Score":null,"Total":0}
引用次数: 0
Abstract
Nuclear protein transcription factors (TFs) regulate all biological processes in plants and are necessary for gene regulation. The transcription of genes during plant growth and development and their response to environmental cues are regulated by TF binding to specific promoter regions in the genomic DNA. Polyploid plants with several sets of chromosomes frequently display intricate genomic biases concerning TF expression. One or more subgenomes may dominate in terms of gene expression, leading to subgenome biases or dominance. These biases can influence various aspects of the crop's biology, including its growth, development, and adaptation. Advances in genomics have speed up the improvement of many important agricultural diploid crops, yet comparable endeavours in polyploid crops have been more challenging. This challenge primarily stems from the large size and intricate nature of the complex genome in polyploid crops, along with the need for comprehensive genome assembly data for such crop varieties as bread wheat, cotton and sugarcane. Several studies have evaluated the biased/asymmetric gene expression patterns, including TFs, within the polyploid crop genomes. In many polyploid crops, not all homologues of TF genes contribute equally to the phenotype. Here, we have examined polyploid crop plants for homeolog gene expression, emphasizing TFs. It is observed that the polyploids retain many gene alleles as functional homeologs that define important features involved in stress response, sugar metabolism, and fibre formation. The possible molecular mechanism describing the structural and epigenetic basis of differential subgenomic TF expression in polyploids is discussed.
期刊介绍:
Published continuously since 1944, The Advances in Protein Chemistry and Structural Biology series has been the essential resource for protein chemists. Each volume brings forth new information about protocols and analysis of proteins. Each thematically organized volume is guest edited by leading experts in a broad range of protein-related topics.