Radiation spectroscopy of irradiated VVER-1200 fuel with burnable Am-absorber: A computational approach

IF 1.6 3区 工程技术 Q3 CHEMISTRY, INORGANIC & NUCLEAR Applied Radiation and Isotopes Pub Date : 2025-01-16 DOI:10.1016/j.apradiso.2025.111674
Sergey V. Bedenko , Gennady N. Vlaskin , Sergey D. Polozkov , Dmitry G. Veretennikov , Alexey S. Demin , Nima Ghal-Eh , Faezeh Rahmani
{"title":"Radiation spectroscopy of irradiated VVER-1200 fuel with burnable Am-absorber: A computational approach","authors":"Sergey V. Bedenko ,&nbsp;Gennady N. Vlaskin ,&nbsp;Sergey D. Polozkov ,&nbsp;Dmitry G. Veretennikov ,&nbsp;Alexey S. Demin ,&nbsp;Nima Ghal-Eh ,&nbsp;Faezeh Rahmani","doi":"10.1016/j.apradiso.2025.111674","DOIUrl":null,"url":null,"abstract":"<div><div>Safe storage of fresh and irradiated fuel is ensured by solving the problem of photon emission protection. The neutron component is usually not taken into account due to its low intensity. However, for the new VVER-1200 fuel, the neutron component consideration is a mandatory procedure for radiation safety. In this study, the radiation dose was calculated for a fuel consisting of UO<sub>2</sub> with a heterogeneous distribution of Am<sub>2</sub>O<sub>2</sub> microcapsules, and the (α, n) component of the neutron background was evaluated. A comparative analysis of radiation characteristics of fuel assemblies shows that there is a significant excess in both the neutron and the photon components of the fuel under study. The yield and dose of neutrons from Am−containing fuel exceed those of uranium−based fuels by a factor of two, and when calculating the dose, it is necessary to take into account the energy spectrum of (α, n) neutrons in Am<sub>2</sub>O<sub>2</sub> microcapsules. The analysis of the impact of Am on the photon component indicates that ensuring radiation safety for both fresh and irradiated fuels necessitates addressing challenges associated with photon radiation protection. This study aims to establish comprehensive procedures and guidelines for the handling of novel fuel materials during both production and post-irradiation processes within the reactor environment.</div></div>","PeriodicalId":8096,"journal":{"name":"Applied Radiation and Isotopes","volume":"218 ","pages":"Article 111674"},"PeriodicalIF":1.6000,"publicationDate":"2025-01-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Radiation and Isotopes","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0969804325000193","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, INORGANIC & NUCLEAR","Score":null,"Total":0}
引用次数: 0

Abstract

Safe storage of fresh and irradiated fuel is ensured by solving the problem of photon emission protection. The neutron component is usually not taken into account due to its low intensity. However, for the new VVER-1200 fuel, the neutron component consideration is a mandatory procedure for radiation safety. In this study, the radiation dose was calculated for a fuel consisting of UO2 with a heterogeneous distribution of Am2O2 microcapsules, and the (α, n) component of the neutron background was evaluated. A comparative analysis of radiation characteristics of fuel assemblies shows that there is a significant excess in both the neutron and the photon components of the fuel under study. The yield and dose of neutrons from Am−containing fuel exceed those of uranium−based fuels by a factor of two, and when calculating the dose, it is necessary to take into account the energy spectrum of (α, n) neutrons in Am2O2 microcapsules. The analysis of the impact of Am on the photon component indicates that ensuring radiation safety for both fresh and irradiated fuels necessitates addressing challenges associated with photon radiation protection. This study aims to establish comprehensive procedures and guidelines for the handling of novel fuel materials during both production and post-irradiation processes within the reactor environment.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Applied Radiation and Isotopes
Applied Radiation and Isotopes 工程技术-核科学技术
CiteScore
3.00
自引率
12.50%
发文量
406
审稿时长
13.5 months
期刊介绍: Applied Radiation and Isotopes provides a high quality medium for the publication of substantial, original and scientific and technological papers on the development and peaceful application of nuclear, radiation and radionuclide techniques in chemistry, physics, biochemistry, biology, medicine, security, engineering and in the earth, planetary and environmental sciences, all including dosimetry. Nuclear techniques are defined in the broadest sense and both experimental and theoretical papers are welcome. They include the development and use of α- and β-particles, X-rays and γ-rays, neutrons and other nuclear particles and radiations from all sources, including radionuclides, synchrotron sources, cyclotrons and reactors and from the natural environment. The journal aims to publish papers with significance to an international audience, containing substantial novelty and scientific impact. The Editors reserve the rights to reject, with or without external review, papers that do not meet these criteria. Papers dealing with radiation processing, i.e., where radiation is used to bring about a biological, chemical or physical change in a material, should be directed to our sister journal Radiation Physics and Chemistry.
期刊最新文献
Evaluation of 18F-FDG absorbed dose ratios in percent in adult and pediatric reference phantoms using DoseCalcs Monte Carlo platform Predicting (n,3n) nuclear reaction cross-sections using XGBoost and Leave-One-Out Cross-Validation A methodology study for sodium quantification in bone and soft tissue based on in vivo neutron activation analysis using a two-compartment model Technetium-99m-labeled stealth liposomes: A new Strategy to Identify metastasis in tumour model Based on the thickness equivalent basis effect decomposition method of ore separation by multi-energy X-ray transmission technology
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1