Tensile force promotes osteogenic differentiation via ephrinB2-EphB4 signaling pathway in orthodontic tooth movement.

IF 2.6 2区 医学 Q1 DENTISTRY, ORAL SURGERY & MEDICINE BMC Oral Health Pub Date : 2025-01-22 DOI:10.1186/s12903-025-05491-8
Hang Yu, Xiaoxi Wei, Huan Jiang, Huichuan Qi, Yi Zhang, Min Hu
{"title":"Tensile force promotes osteogenic differentiation via ephrinB2-EphB4 signaling pathway in orthodontic tooth movement.","authors":"Hang Yu, Xiaoxi Wei, Huan Jiang, Huichuan Qi, Yi Zhang, Min Hu","doi":"10.1186/s12903-025-05491-8","DOIUrl":null,"url":null,"abstract":"<p><strong>Objective: </strong>To investigating whether osteogenic differentiation of osteoblasts promoted by tension force (TF) is mediated by ephrinB2-EphB4 signaling.</p><p><strong>Methods: </strong>TF was applied to MC3T3-E1 cells, then CCK-8 and live/dead staining were used to detect cell proliferation. Levels of osteogenic differentiation-related factors were detected by ALP staining, ARS staining, qPCR and western blot. NVP-BHG712 was used to block EphB4 receptor. Establishing a rat orthodontic tooth movement (OTM) model, ephrinB2-Fc and NVP-BHG712 were used to treat rats. Micro-CT and H&E staining were used to detect alveolar bone. Changes of MAPK pathways were detected to investigate whether they were downstream of ephrinB2-EphB4 signaling in mediating TF promote osteogenic differentiation.</p><p><strong>Result: </strong>We explored the effect of TF on MC3T3-E1 cells, and found that TF significantly promoted osteogenic differentiation, but when EphB4 receptor was blocked, the promotion was inhibited. In vivo, we found that TF improved alveolar bone formation through ephrinB2-EphB4 signaling. Further investigation into the signaling pathways revealed that TF significantly increased levels of MAPK pathways, however, when EphB4 receptor was blocked, only the promotion of p-ERK1/2 was decreased.</p><p><strong>Conclusion: </strong>TF promotes osteogenic differentiation through ephrinB2-EphB4 signaling and ERK1/2 pathway is a downstream of ephrinB2-EphB4 signaling partially mediate mediates TF-induced promotion of osteogenic differentiation.</p>","PeriodicalId":9072,"journal":{"name":"BMC Oral Health","volume":"25 1","pages":"118"},"PeriodicalIF":2.6000,"publicationDate":"2025-01-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11755856/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"BMC Oral Health","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s12903-025-05491-8","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"DENTISTRY, ORAL SURGERY & MEDICINE","Score":null,"Total":0}
引用次数: 0

Abstract

Objective: To investigating whether osteogenic differentiation of osteoblasts promoted by tension force (TF) is mediated by ephrinB2-EphB4 signaling.

Methods: TF was applied to MC3T3-E1 cells, then CCK-8 and live/dead staining were used to detect cell proliferation. Levels of osteogenic differentiation-related factors were detected by ALP staining, ARS staining, qPCR and western blot. NVP-BHG712 was used to block EphB4 receptor. Establishing a rat orthodontic tooth movement (OTM) model, ephrinB2-Fc and NVP-BHG712 were used to treat rats. Micro-CT and H&E staining were used to detect alveolar bone. Changes of MAPK pathways were detected to investigate whether they were downstream of ephrinB2-EphB4 signaling in mediating TF promote osteogenic differentiation.

Result: We explored the effect of TF on MC3T3-E1 cells, and found that TF significantly promoted osteogenic differentiation, but when EphB4 receptor was blocked, the promotion was inhibited. In vivo, we found that TF improved alveolar bone formation through ephrinB2-EphB4 signaling. Further investigation into the signaling pathways revealed that TF significantly increased levels of MAPK pathways, however, when EphB4 receptor was blocked, only the promotion of p-ERK1/2 was decreased.

Conclusion: TF promotes osteogenic differentiation through ephrinB2-EphB4 signaling and ERK1/2 pathway is a downstream of ephrinB2-EphB4 signaling partially mediate mediates TF-induced promotion of osteogenic differentiation.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
BMC Oral Health
BMC Oral Health DENTISTRY, ORAL SURGERY & MEDICINE-
CiteScore
3.90
自引率
6.90%
发文量
481
审稿时长
6-12 weeks
期刊介绍: BMC Oral Health is an open access, peer-reviewed journal that considers articles on all aspects of the prevention, diagnosis and management of disorders of the mouth, teeth and gums, as well as related molecular genetics, pathophysiology, and epidemiology.
期刊最新文献
Clinical anxiety among a sample of dental students in South Sinai. Clinical study on horizontal bone augmentation using an alveolar mucosa-periosteal bone flap. Comparative study for assessment of two different minimally invasive caries removal techniques. Association of ERCC2/XPD polymorphisms and the risk of head and neck carcinoma: a systematic review, meta-analysis, trial sequential analysis, network analysis, and functional effects. Effect of different restorative design on stress concentration of lithium disilicate and monolithic zirconia endocrown on a mandibular molar - a finite element analysis.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1