{"title":"Type IV collagen expression is regulated by Notch3-mediated Notch signaling during angiogenesis","authors":"Kazuki Kukita , Masayoshi Sakaguchi , Hiroki Inoue , Yasutada Imamura , Yongchol Shin","doi":"10.1016/j.bbrc.2025.151351","DOIUrl":null,"url":null,"abstract":"<div><div>Angiogenesis, the process of new blood vessel formation, involves endothelial cell proliferation and migration, accompanied by the remodeling of the extracellular matrix (ECM). Type IV collagen, a major ECM component, plays a critical role in vascular basement membrane regeneration, influencing cell polarity, migration, and survival. This study examines the regulatory role of Notch signaling, mediated by Notch3, in type IV collagen expression using TIG-1 fibroblasts and a co-culture angiogenesis model with human umbilical vein endothelial cells (HUVECs). Using small interfering RNA (siRNA) to suppress <em>Notch3</em> expression, we observed a significant reduction in <em>COL4A1</em> gene expression, which encodes the α1 chain of type IV collagen. Conversely, transient expression of the Notch3 intracellular domain (NICD3) activated Notch signaling, resulting in increased <em>COL4A1</em> expression. In the co-culture model, pre-treatment of TIG-1 cells with Notch signaling inhibitors, including siNotch3 and DAPT, decreased the number of α1(IV)-positive TIG-1 fibroblasts adjacent to HUVECs. This reduction highlights the essential role of Notch3-mediated signaling in promoting type IV collagen expression during angiogenesis. Our findings suggest that Notch signaling regulates type IV collagen expression levels, supporting basement membrane formation and vascular maturation. These results provide insight into the molecular mechanisms of angiogenesis, potentially contributing to therapeutic strategies targeting vascular-related pathologies.</div></div>","PeriodicalId":8779,"journal":{"name":"Biochemical and biophysical research communications","volume":"749 ","pages":"Article 151351"},"PeriodicalIF":2.5000,"publicationDate":"2025-01-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biochemical and biophysical research communications","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0006291X25000658","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Angiogenesis, the process of new blood vessel formation, involves endothelial cell proliferation and migration, accompanied by the remodeling of the extracellular matrix (ECM). Type IV collagen, a major ECM component, plays a critical role in vascular basement membrane regeneration, influencing cell polarity, migration, and survival. This study examines the regulatory role of Notch signaling, mediated by Notch3, in type IV collagen expression using TIG-1 fibroblasts and a co-culture angiogenesis model with human umbilical vein endothelial cells (HUVECs). Using small interfering RNA (siRNA) to suppress Notch3 expression, we observed a significant reduction in COL4A1 gene expression, which encodes the α1 chain of type IV collagen. Conversely, transient expression of the Notch3 intracellular domain (NICD3) activated Notch signaling, resulting in increased COL4A1 expression. In the co-culture model, pre-treatment of TIG-1 cells with Notch signaling inhibitors, including siNotch3 and DAPT, decreased the number of α1(IV)-positive TIG-1 fibroblasts adjacent to HUVECs. This reduction highlights the essential role of Notch3-mediated signaling in promoting type IV collagen expression during angiogenesis. Our findings suggest that Notch signaling regulates type IV collagen expression levels, supporting basement membrane formation and vascular maturation. These results provide insight into the molecular mechanisms of angiogenesis, potentially contributing to therapeutic strategies targeting vascular-related pathologies.
期刊介绍:
Biochemical and Biophysical Research Communications is the premier international journal devoted to the very rapid dissemination of timely and significant experimental results in diverse fields of biological research. The development of the "Breakthroughs and Views" section brings the minireview format to the journal, and issues often contain collections of special interest manuscripts. BBRC is published weekly (52 issues/year).Research Areas now include: Biochemistry; biophysics; cell biology; developmental biology; immunology
; molecular biology; neurobiology; plant biology and proteomics