Type IV collagen expression is regulated by Notch3-mediated Notch signaling during angiogenesis

IF 2.5 3区 生物学 Q3 BIOCHEMISTRY & MOLECULAR BIOLOGY Biochemical and biophysical research communications Pub Date : 2025-01-16 DOI:10.1016/j.bbrc.2025.151351
Kazuki Kukita , Masayoshi Sakaguchi , Hiroki Inoue , Yasutada Imamura , Yongchol Shin
{"title":"Type IV collagen expression is regulated by Notch3-mediated Notch signaling during angiogenesis","authors":"Kazuki Kukita ,&nbsp;Masayoshi Sakaguchi ,&nbsp;Hiroki Inoue ,&nbsp;Yasutada Imamura ,&nbsp;Yongchol Shin","doi":"10.1016/j.bbrc.2025.151351","DOIUrl":null,"url":null,"abstract":"<div><div>Angiogenesis, the process of new blood vessel formation, involves endothelial cell proliferation and migration, accompanied by the remodeling of the extracellular matrix (ECM). Type IV collagen, a major ECM component, plays a critical role in vascular basement membrane regeneration, influencing cell polarity, migration, and survival. This study examines the regulatory role of Notch signaling, mediated by Notch3, in type IV collagen expression using TIG-1 fibroblasts and a co-culture angiogenesis model with human umbilical vein endothelial cells (HUVECs). Using small interfering RNA (siRNA) to suppress <em>Notch3</em> expression, we observed a significant reduction in <em>COL4A1</em> gene expression, which encodes the α1 chain of type IV collagen. Conversely, transient expression of the Notch3 intracellular domain (NICD3) activated Notch signaling, resulting in increased <em>COL4A1</em> expression. In the co-culture model, pre-treatment of TIG-1 cells with Notch signaling inhibitors, including siNotch3 and DAPT, decreased the number of α1(IV)-positive TIG-1 fibroblasts adjacent to HUVECs. This reduction highlights the essential role of Notch3-mediated signaling in promoting type IV collagen expression during angiogenesis. Our findings suggest that Notch signaling regulates type IV collagen expression levels, supporting basement membrane formation and vascular maturation. These results provide insight into the molecular mechanisms of angiogenesis, potentially contributing to therapeutic strategies targeting vascular-related pathologies.</div></div>","PeriodicalId":8779,"journal":{"name":"Biochemical and biophysical research communications","volume":"749 ","pages":"Article 151351"},"PeriodicalIF":2.5000,"publicationDate":"2025-01-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biochemical and biophysical research communications","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0006291X25000658","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Angiogenesis, the process of new blood vessel formation, involves endothelial cell proliferation and migration, accompanied by the remodeling of the extracellular matrix (ECM). Type IV collagen, a major ECM component, plays a critical role in vascular basement membrane regeneration, influencing cell polarity, migration, and survival. This study examines the regulatory role of Notch signaling, mediated by Notch3, in type IV collagen expression using TIG-1 fibroblasts and a co-culture angiogenesis model with human umbilical vein endothelial cells (HUVECs). Using small interfering RNA (siRNA) to suppress Notch3 expression, we observed a significant reduction in COL4A1 gene expression, which encodes the α1 chain of type IV collagen. Conversely, transient expression of the Notch3 intracellular domain (NICD3) activated Notch signaling, resulting in increased COL4A1 expression. In the co-culture model, pre-treatment of TIG-1 cells with Notch signaling inhibitors, including siNotch3 and DAPT, decreased the number of α1(IV)-positive TIG-1 fibroblasts adjacent to HUVECs. This reduction highlights the essential role of Notch3-mediated signaling in promoting type IV collagen expression during angiogenesis. Our findings suggest that Notch signaling regulates type IV collagen expression levels, supporting basement membrane formation and vascular maturation. These results provide insight into the molecular mechanisms of angiogenesis, potentially contributing to therapeutic strategies targeting vascular-related pathologies.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Biochemical and biophysical research communications
Biochemical and biophysical research communications 生物-生化与分子生物学
CiteScore
6.10
自引率
0.00%
发文量
1400
审稿时长
14 days
期刊介绍: Biochemical and Biophysical Research Communications is the premier international journal devoted to the very rapid dissemination of timely and significant experimental results in diverse fields of biological research. The development of the "Breakthroughs and Views" section brings the minireview format to the journal, and issues often contain collections of special interest manuscripts. BBRC is published weekly (52 issues/year).Research Areas now include: Biochemistry; biophysics; cell biology; developmental biology; immunology ; molecular biology; neurobiology; plant biology and proteomics
期刊最新文献
Editorial Board OsMADS22 interacts with OsMADS50 to regulate floral transition in rice Unspliced XBP1 enhences metabolic reprogramming in colorectal cancer cells by interfering with the mitochondrial localization of MGME1 Editorial Board Corrigendum to "Soyasapogenol c: A novel liver x receptor α agonist that mitigates cholesterol accumulation in diabetic kidney disease" [Biochem. Biophys. Res. Commun. 752 (2025) 151366].
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1