In-line prediction of viability and viable cell density through machine learning-based soft sensor modeling and an integrated systems approach: An industrially relevant PAT case study.

IF 2.5 3区 生物学 Q3 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Biotechnology Progress Pub Date : 2025-01-23 DOI:10.1002/btpr.3520
Sneha Suman, Michaela Murr, Jacob Crowe, Spencer Holt, Jakob Morris, Andrew Yongky, Kyle McElearney, Glen Bolton
{"title":"In-line prediction of viability and viable cell density through machine learning-based soft sensor modeling and an integrated systems approach: An industrially relevant PAT case study.","authors":"Sneha Suman, Michaela Murr, Jacob Crowe, Spencer Holt, Jakob Morris, Andrew Yongky, Kyle McElearney, Glen Bolton","doi":"10.1002/btpr.3520","DOIUrl":null,"url":null,"abstract":"<p><p>The biopharmaceutical industry is shifting toward employing digital analytical tools for improved understanding of systems biology data and production of quality products. The implementation of these technologies can streamline the manufacturing process by enabling faster responses, reducing manual measurements, and building continuous and automated capabilities. This study discusses the use of soft sensor models for prediction of viability and viable cell density (VCD) in CHO cell culture processes by using in-line optical density and permittivity sensors. A significant innovation of this study is the development of a simplified empirical model and adoption of an integrated systems approach for in-line viability prediction. The initial evaluation of this viability model demonstrated promising accuracy with 96% of the residuals within a ±5% error limit and a Final Day mean absolute percentage error of ≤5% across various scales and process conditions. This model was integrated with a VCD prediction model utilizing Gaussian Process Regressor with Matern Kernel (nu = 0.5), selected from over a hundred advanced machine learning techniques. This VCD prediction model had an R<sup>2</sup> of 0.92 with 89% predictions within ±10% error and significantly outperformed the commonly used partial least squares regression models. The results validated the use of these models for real-time in-line prediction of viability and VCD and highlighted the potential to substantially reduce reliance on labor-intensive discrete offline measurements. The integration of these innovative technologies aligns with regulatory guidelines and establishes a foundation for further advancements in the biomanufacturing industry, promising improved process control, efficiency, and compliance with quality standards.</p>","PeriodicalId":8856,"journal":{"name":"Biotechnology Progress","volume":" ","pages":"e3520"},"PeriodicalIF":2.5000,"publicationDate":"2025-01-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biotechnology Progress","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1002/btpr.3520","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

The biopharmaceutical industry is shifting toward employing digital analytical tools for improved understanding of systems biology data and production of quality products. The implementation of these technologies can streamline the manufacturing process by enabling faster responses, reducing manual measurements, and building continuous and automated capabilities. This study discusses the use of soft sensor models for prediction of viability and viable cell density (VCD) in CHO cell culture processes by using in-line optical density and permittivity sensors. A significant innovation of this study is the development of a simplified empirical model and adoption of an integrated systems approach for in-line viability prediction. The initial evaluation of this viability model demonstrated promising accuracy with 96% of the residuals within a ±5% error limit and a Final Day mean absolute percentage error of ≤5% across various scales and process conditions. This model was integrated with a VCD prediction model utilizing Gaussian Process Regressor with Matern Kernel (nu = 0.5), selected from over a hundred advanced machine learning techniques. This VCD prediction model had an R2 of 0.92 with 89% predictions within ±10% error and significantly outperformed the commonly used partial least squares regression models. The results validated the use of these models for real-time in-line prediction of viability and VCD and highlighted the potential to substantially reduce reliance on labor-intensive discrete offline measurements. The integration of these innovative technologies aligns with regulatory guidelines and establishes a foundation for further advancements in the biomanufacturing industry, promising improved process control, efficiency, and compliance with quality standards.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Biotechnology Progress
Biotechnology Progress 工程技术-生物工程与应用微生物
CiteScore
6.50
自引率
3.40%
发文量
83
审稿时长
4 months
期刊介绍: Biotechnology Progress , an official, bimonthly publication of the American Institute of Chemical Engineers and its technological community, the Society for Biological Engineering, features peer-reviewed research articles, reviews, and descriptions of emerging techniques for the development and design of new processes, products, and devices for the biotechnology, biopharmaceutical and bioprocess industries. Widespread interest includes application of biological and engineering principles in fields such as applied cellular physiology and metabolic engineering, biocatalysis and bioreactor design, bioseparations and downstream processing, cell culture and tissue engineering, biosensors and process control, bioinformatics and systems biology, biomaterials and artificial organs, stem cell biology and genetics, and plant biology and food science. Manuscripts concerning the design of related processes, products, or devices are also encouraged. Four types of manuscripts are printed in the Journal: Research Papers, Topical or Review Papers, Letters to the Editor, and R & D Notes.
期刊最新文献
Efficient fermentative production of lactodifucotetraose by controlling sequential glycosyltransferase reactions in Escherichia coli. Rapid bioreactor process optimization and scale-up for production of a measles vector COVID-19 vaccine candidate. Pre-folding purification procedures for inclusion body-derived non-tagged cationic recombinant proteins with multiple disulfide bonds for efficient refolding. Stipulations of cell and gene therapy and the ties to biomanufacturing. A design space for the filtration of challenging monoclonal antibodies using Planova™ S20N, a new regenerated cellulose virus removal filter.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1