Application of Gene Editing in Triple-Negative Breast Cancer Research

IF 2.8 3区 生物学 Q3 BIOCHEMISTRY & MOLECULAR BIOLOGY Cell Biochemistry and Function Pub Date : 2025-01-22 DOI:10.1002/cbf.70044
Shuying Feng, Jixia Li, Aifen Yan, Xiangxing Zhu, Ligang Zhang, Dongsheng Tang, Lian Liu
{"title":"Application of Gene Editing in Triple-Negative Breast Cancer Research","authors":"Shuying Feng,&nbsp;Jixia Li,&nbsp;Aifen Yan,&nbsp;Xiangxing Zhu,&nbsp;Ligang Zhang,&nbsp;Dongsheng Tang,&nbsp;Lian Liu","doi":"10.1002/cbf.70044","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>With the rapid development of gene editing technology, its application in breast cancer has gradually become the focus of research. This article reviews the application of gene editing technology in the treatment of breast cancer, and discusses its challenges and future development directions. The key application areas of gene editing technology in the treatment of breast cancer will be outlined, including the discovery of new therapeutic targets and the development of drugs related to the pathway. Gene editing technology has played an important role in the discovery of new therapeutic targets. Through the use of gene editing technology, breast cancer-related genes are systematically edited to regulate key regulatory factors on related pathways or key tumor suppressor genes such as <i>FOXC1</i> and <i>BRCA</i>, and the results are analyzed in cell or animal experiments, and the target is obtained from the experimental results, which provides important clues for the development of new drugs. This approach provides an innovative way to find more effective treatment strategies and inhibit tumor growth. In addition, gene editing technology has also promoted the personalization of breast cancer treatment. By analyzing a patient's genomic information, researchers can pinpoint key genetic mutations in a patient's tumor and design personalized treatments. This personalized treatment approach is expected to improve the therapeutic effect and reduce adverse reactions. Finally, the application of gene editing technology also provides support for the development of breast cancer immunotherapy. By editing immune cells to make them more potent against tumors, researchers are trying to develop more effective immunotherapies to bring new treatment options to breast cancer patients.</p></div>","PeriodicalId":9669,"journal":{"name":"Cell Biochemistry and Function","volume":"43 1","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2025-01-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell Biochemistry and Function","FirstCategoryId":"99","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/cbf.70044","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

With the rapid development of gene editing technology, its application in breast cancer has gradually become the focus of research. This article reviews the application of gene editing technology in the treatment of breast cancer, and discusses its challenges and future development directions. The key application areas of gene editing technology in the treatment of breast cancer will be outlined, including the discovery of new therapeutic targets and the development of drugs related to the pathway. Gene editing technology has played an important role in the discovery of new therapeutic targets. Through the use of gene editing technology, breast cancer-related genes are systematically edited to regulate key regulatory factors on related pathways or key tumor suppressor genes such as FOXC1 and BRCA, and the results are analyzed in cell or animal experiments, and the target is obtained from the experimental results, which provides important clues for the development of new drugs. This approach provides an innovative way to find more effective treatment strategies and inhibit tumor growth. In addition, gene editing technology has also promoted the personalization of breast cancer treatment. By analyzing a patient's genomic information, researchers can pinpoint key genetic mutations in a patient's tumor and design personalized treatments. This personalized treatment approach is expected to improve the therapeutic effect and reduce adverse reactions. Finally, the application of gene editing technology also provides support for the development of breast cancer immunotherapy. By editing immune cells to make them more potent against tumors, researchers are trying to develop more effective immunotherapies to bring new treatment options to breast cancer patients.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
相关文献
Triple negative breast cancer: breast cancer research in evolution.
IF 0 Breast diseasePub Date : 2010-01-01 DOI: 10.3233/BD-2010-0314
Jennifer Eng-Wong, Sally Hunsberger, Jo Anne Zujewski
TMEPAI genome editing in triple negative breast cancer cells
IF 0.5 Medical Journal of IndonesiaPub Date : 2017-05-16 DOI: 10.13181/MJI.V26I1.1871
B. W. Wardhani, M. U. Puteri, Yukihide Watanabe, M. Louisa, R. Setiabudy, Mitsuyasu Kato
ADAR1 editing dependency in triple-negative breast cancer
IF 0 bioRxiv : the preprint server for biologyPub Date : 2020-02-02 DOI: 10.1101/2020.01.31.928911
Che-Pei Kung, Kyle A. Cottrell, Sua Ryu, Emily R. Bramel, R. Kladney, Emily A. Bross, L. Maggi, J. Weber
来源期刊
Cell Biochemistry and Function
Cell Biochemistry and Function 生物-生化与分子生物学
CiteScore
6.20
自引率
0.00%
发文量
93
审稿时长
6-12 weeks
期刊介绍: Cell Biochemistry and Function publishes original research articles and reviews on the mechanisms whereby molecular and biochemical processes control cellular activity with a particular emphasis on the integration of molecular and cell biology, biochemistry and physiology in the regulation of tissue function in health and disease. The primary remit of the journal is on mammalian biology both in vivo and in vitro but studies of cells in situ are especially encouraged. Observational and pathological studies will be considered providing they include a rational discussion of the possible molecular and biochemical mechanisms behind them and the immediate impact of these observations to our understanding of mammalian biology.
期刊最新文献
Characterizing the Role of Endocannabinoid Receptor Cnr1 in Mouse Ovarian Granulosa Cells E7HPV16 Oncogene and 17beta-Estradiol Stress, Promotes Oncogenic microRNA Expression Patterns, Cell Proliferation and Cervical Intraepithelial Neoplasia 1 The Mechanisms and Implications of Cardiolipin in the Regulation of Cell Death HDAC4-AS1/CTCF Transcriptionally Represses HDAC4 Under Stress, Whereas HDAC4 Inhibits Stress-Induced Syncytiotrophoblast Cellular Pyroptosis by Deacetylating NLRP3 and GSDMD Necroptotic Suppression of Lung Cancer Cell Proliferation and Migration: A Comprehensive In Vitro and In Silico Study to Determine New Molecular Targets for Pexidartinib
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1